2024
Authors
Braun, J; Baidi, K; Bonzatto, L; Berger, G; Pinto, M; Kalbermatter, RB; Klein, L; Grilo, V; Pereira, AI; Costa, P; Lima, J;
Publication
SYNERGETIC COOPERATION BETWEEN ROBOTS AND HUMANS, VOL 1, CLAWAR 2023
Abstract
Robotics competitions are highly strategic tools to engage and motivate students, cultivating their curiosity and enthusiasm for technology and robotics. These competitions encompass various disciplines, such as programming, electronics, control systems, and prototyping, often beginning with developing a mobile platform. This paper focuses on designing and implementing an omnidirectional mecanum platform, encompassing aspects of mechatronics, mechanics, electronics, kinematics models, and control. Additionally, a simulation model is introduced and compared with the physical robot, providing a means to validate the proposed platform.
2024
Authors
de Castro, GGR; Santos, TMB; Andrade, FAA; Lima, J; Haddad, DB; Honorio, LD; Pinto, MF;
Publication
MACHINES
Abstract
This research presents a cooperation strategy for a heterogeneous group of robots that comprises two Unmanned Aerial Vehicles (UAVs) and one Unmanned Ground Vehicles (UGVs) to perform tasks in dynamic scenarios. This paper defines specific roles for the UAVs and UGV within the framework to address challenges like partially known terrains and dynamic obstacles. The UAVs are focused on aerial inspections and mapping, while UGV conducts ground-level inspections. In addition, the UAVs can return and land at the UGV base, in case of a low battery level, to perform hot swapping so as not to interrupt the inspection process. This research mainly emphasizes developing a robust Coverage Path Planning (CPP) algorithm that dynamically adapts paths to avoid collisions and ensure efficient coverage. The Wavefront algorithm was selected for the two-dimensional offline CPP. All robots must follow a predefined path generated by the offline CPP. The study also integrates advanced technologies like Neural Networks (NN) and Deep Reinforcement Learning (DRL) for adaptive path planning for both robots to enable real-time responses to dynamic obstacles. Extensive simulations using a Robot Operating System (ROS) and Gazebo platforms were conducted to validate the approach considering specific real-world situations, that is, an electrical substation, in order to demonstrate its functionality in addressing challenges in dynamic environments and advancing the field of autonomous robots.
2023
Authors
Silva, AS; Lima, J; Pereira, A; Silva, AMT; Gomes, HT;
Publication
COMPUTATIONAL SCIENCE AND ITS APPLICATIONS-ICCSA 2023 WORKSHOPS, PART VIII
Abstract
Studies dealing with route optimization have received considerable attention in recent years due to the increased demand for transportation services. For decades, scholars have developed robust algorithms designed to solve various Vehicle Routing Problems (VRP). In most cases, the focus is to present an algorithm that can overcome the shortest distances reported in other studies. On the other hand, execution time is also an important parameter that may limit the feasibility of the utilization in real scenarios for some applications. For this reason, in this work, a Guided Local Search (GLS) metaheuristic available in open-source OR-Tools will be tested to solve the Augerat instances of Capacitated Vehicle Routing Problems (CVRP). The stop criterion used here is the execution time, going from 1 s (standard) to 10 s, with a last run of 360 s. The numerical results demonstrate that increasing the execution time returns significant improvement in distance optimization. However, the optimization found considering high execution times can be expensive in terms of time, and not feasible for situations demanding faster algorithms, such as in Dynamic Vehicle Routing Problems (DVRP). Nonetheless, the GLS has proven to be a versatile algorithm for use where distance optimization is the main priority (high execution times) and in cases where faster algorithms are required (low execution times).
2023
Authors
Pilarski, L; Luiz, E; Braun, J; Nakano, Y; Pinto, V; Costa, P; Lima, J;
Publication
International Conference on Electrical, Computer, Communications and Mechatronics Engineering, ICECCME 2023
Abstract
Artificial Intelligence has been introduced in many applications, namely in artificial vision-based systems with object detection tasks. This paper presents an object localization system with a motivation to use it in autonomous mobile robots at robotics competitions. The system aims to allow robots to accomplish their tasks more efficiently. Object detection is performed using a camera and artificial intelligence based on the YOLOv4 Tiny detection model. An algorithm was developed that uses the data from the system to estimate the parameters of location, distance, and orientation based on the pinhole camera model and trigonometric modelling. It can be used in smart identification procedures of objects. Practical tests and results are presented, constantly locating the objects and with errors between 0.16 and 3.8 cm, concluding that the object localization system is adequate for autonomous mobile robots. © 2023 IEEE.
2024
Authors
Nowakowski, M; Berger, GS; Braun, J; Mendes, JA; Bonzatto, L Jr; Lima, J;
Publication
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE, VOL 2
Abstract
The utilization of unmanned vehicles for specialized tasks has gained significant attention in both military and civilian domains. This article explores the application of commercial unmanned aerial vehicles (UAVs) for reconnaissance purposes, specifically to verify autonomous driving missions assigned to the developed TAERO manned-unmanned vehicle in field operations. The paper introduces the TAERO vehicle, highlighting its functionality and capabilities for unmanned missions. The architecture of the unmanned ground vehicle (UGV) system is discussed taking into consideration the autonomy subsystem and used location data. The limitations associated with terrain and potential obstacles are addressed as well as importance of acquiring accurate terrain information for successful autonomous operation. The solution proposed in our study involves the use of a commercially available UAV applied to the visual tracking of potential targets in an engagement scenario. Details related to flight route planning system, geolocation, target tracking, and data transmission between robotic platforms are discussed and presented in this work. The acquired real-time data plays a crucial role in confirm- ing the mission, making necessary adjustments, or altering the planned route. The UAV platform, known for its maneuverability and operational capabilities, can operate ahead as a reconnaissance element, improving the overall reconnaissance capabilities of the system. Upon completion of the mission, the UAV can return to the base or land on a moving vehicle platform. The authors proposed integration of a UAV that significantly enhances the autonomous mode capabilities of unmanned ground platform, improving operation in unknown environment during special mission.
2024
Authors
Ferreira, E; Grilo, V; Braun, J; Santos, M; Pereira, AI; Costa, P; Lima, J;
Publication
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE ADVANCES IN ROBOTICS, VOL 1
Abstract
This article presents the development of a low-cost 3D mapping technology for trajectory planning using a 2D LiDAR and a stepper motor. The research covers the design and implementation of a circuit board to connect and control all components, including the LiDAR and motor. In addition, a 3D printed support structure was developed to connect the LiDAR to the motor shaft. System data acquisition and processing are addressed, as well as the generation of the point cloud and the application of the A* algorithm for trajectory planning. Experimental results demonstrate the effectiveness and feasibility of the proposed technology for low-cost 3D mapping and trajectory planning applications.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.