Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Aníbal Matos

2022

An Autonomous System for Collecting Water Samples from the Surface

Authors
Pinto, AF; Cruz, NA; Ferreira, BM; Abreu, NM; Goncalves, CE; Villa, MP; Matos, AC; Honorio, LD; Westin, LG;

Publication
OCEANS 2022

Abstract
This paper describes a system designed to collect water samples, from the surface down to a configurable depth, and with configurable profiles of vertical velocity. The design was intended for the analysis of suspended sediments, therefore the sampling can integrate water flow for a given depth profile, or at a specific depth. The system is based on a catamaran-shaped platform, from which a towfish is lowered to collect the water samples. The use of a surface vehicle ensures a permanent link between the operator and the full system, allowing for a proper mission supervision. All components can be remotely controlled from the control station, or programmed for fully autonomous operation. Although the main intended use is for the analysis of suspended sediments in rivers, it can easily be extended to collect water samples in other water bodies.

2021

DIIUS - Distributed Perception for Inspection of Aquatic Structures

Authors
Campos D.F.; Pereira M.; Matos A.; Pinto A.M.;

Publication
Oceans Conference Record (IEEE)

Abstract
The worldwide context has fostered the innovation geared to the blue growth. However, the aquatic environment imposes many restrictions to mobile robots, as their perceptual capacity becomes severely limited. DIIUS aims to strengthen the perception of distributed robotic systems to improve the current procedures for inspection of aquatic structures (constructions and/or vessels).The perception of large working areas from multiples robots raises a number of unresolved inference problems and calls for new interaction patterns between multiple disciplines, both at the conceptual and technical level. To address this important challenge, the DIIUS project seeks to reinforce the current state-of-art in several scientific domains that fit into artificial intelligence, computer vision, and robotics. Through case studies focused on 3D mapping of aquatic structures (ex., maritime constructions and adduction tunnels), the project investigates new spatio-temporal data association techniques, including the correlation of sensors from heterogeneous robot formations operating in environments with communications constraints.

2021

Differential Pressure Speedometer for Autonomous Underwater Vehicle

Authors
Villa, MP; Ferreira, BM; Matos, AC;

Publication
OCEANS 2021: San Diego – Porto

Abstract

2022

Modular Multi-Domain Aware Autonomous Surface Vehicle for Inspection

Authors
Campos, DF; Matos, A; Pinto, AM;

Publication
IEEE ACCESS

Abstract
A growing interest in ocean exploration for scientific and commercial research has been shown, mainly due to the technological developments for maritime and offshore industries. The use of Autonomous surface vehicles (ASV) have a promising role to revolutionize the transportation, monitorization, operation and maintenance areas, allowing to perform distinct task from offshore assets inspection to harbor patrolling. This work presents SENSE, an autonomouS vEssel for multi-domaiN inSpection and maintEnance. It provides an open-source hardware and software architecture that is easy to replicate for both research institutes and industry. This is a multi-purpose vehicle capable of acquiring multi-domain data for inspecting and reconstructing maritime infrastructures. SENSE provides a research platform which can increase the situational awareness capabilities for ASVs. SENSE full configuration provides multimodal sensory data acquired from both domains using a Light Detection And Ranging (LiDAR), a stereoscopic camera, and a multibeam echosounder. In addition, it supplies navigation information obtained from a real-time kinematic satellite navigation system and inertial measurement units. Moreover, the tests performed at the harbor of Marina de Leca, at Porto, Portugal, resulted in a dataset which captures a fully operational harbor. It illustrates several conditions on maritime scenarios, such as undocking and docking examples, crossings with other vehicles and distinct types of moored vessels. The data available represents both domains of the maritime scenario, being the first public dataset acquired for multi-domain observation using a single vehicle. This paper also provides examples of applications for navigation and inspection on multi-domain scenarios, such as odometry estimation, bathymetric surveying and multi-domain mapping.

2021

Occupancy Grid Mapping from 2D SONAR Data for Underwater Scenes

Authors
Nunes, A; Gaspar, AR; Matos, A;

Publication
OCEANS 2021: San Diego – Porto

Abstract

2022

Multi-criteria metric to evaluate motion planners for underwater intervention

Authors
Silva, R; Matos, A; Pinto, AM;

Publication
AUTONOMOUS ROBOTS

Abstract
Underwater autonomous manipulation is the capability of a mobile robot to perform intervention tasks that require physical contact with unstructured environments without continuous human supervision. Being difficult to assess the behaviour of existing motion planner algorithms, this research proposes a new planner evaluation metric to identify well-behaved planners for specialized tasks of inspection and monitoring of man-made underwater structures. This metric is named NEMU and combines three different performance indicators: effectiveness, safety and adaptability. NEMU deals with the randomization of sampling-based motion planners. Moreover, this article presents a benchmark of multiple planners applied to a 6 DoF manipulator operating underwater. Results conducted in real scenarios show that different planners are better suited for different tasks. Experiments demonstrate that the NEMU metric can be used to distinguish the performance of planners for particular movement conditions. Moreover, it identifies the most promising planner for collision-free motion planning, being a valuable contribution for the inspection of maritime structures, as well as for the manipulation procedures of autonomous underwater vehicles during close range operations.

  • 14
  • 25