Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Pedro Gomes Costa

2021

Multiple Mobile Robots Scheduling Based on Simulated Annealing Algorithm

Authors
Matos, D; Costa, P; Lima, J; Valente, A;

Publication
Optimization, Learning Algorithms and Applications - First International Conference, OL2A 2021, Bragança, Portugal, July 19-21, 2021, Revised Selected Papers

Abstract
Task Scheduling assumes an integral topic in the efficiency of multiple mobile robots systems and is a key part in most modern manufacturing systems. Advances in the field of combinatorial optimisation have allowed the implementation of algorithms capable of solving the different variants of the vehicle routing problem in relation to different objectives. However few of this approaches are capable of taking into account the nuances associated with the coordinated path planning in multi-AGV systems. This paper presents a new study about the implementation of the Simulated Annealing algorithm to minimise the time and distance cost of executing a tasks set while taking into account possible pathing conflicts that may occur during the execution of the referred tasks. This implementation uses an estimation of the planned paths for the robots, provided by the Time Enhanced A* (TEA*) to determine where possible pathing conflicts occur and uses the Simulated Annealing algorithm to optimise the attribution of tasks to each robot, in order to minimise the pathing conflicts. Results are presented that validate the efficiency of this algorithm and compare it to an approach that does not take into account the estimation of the robots paths.

2021

Multi AGV Industrial Supervisory System

Authors
Cruz A.; Matos D.; Lima J.; Costa P.; Costa P.;

Publication
Communications in Computer and Information Science

Abstract
Automated guided vehicles (AGV) represent a key element in industries’ intralogistics and the use of AGV fleets bring multiple advantages. Nevertheless, coordinating a fleet of AGV is already a complex task but when exposed to delays in the trajectory and communication faults it can represent a threat, compromising the safety, productivity and efficiency of these systems. Concerning this matter, trajectory planning algorithms allied with supervisory systems have been studied and developed. This article aims to, based on work developed previously, implement and test a Multi AGV Supervisory System on real robots and analyse how the system responds to the dynamic of a real environment, analysing its intervention, what influences it and how the execution time is affected.

2022

Path Planning with Hybrid Maps for processing and memory usage optimisation

Authors
Santos, LC; Santos, FN; Aguiar, AS; Valente, A; Costa, P;

Publication
2022 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC)

Abstract
Robotics will play an essential role in agriculture. Deploying agricultural robots on the farm is still a challenging task due to the terrain's irregularity and size. Optimal path planning solutions may fail in larger terrains due to memory requirements as the search space increases. This work presents a novel open-source solution called AgRob Topologic Path Planner, which is capable of performing path planning operations using a hybrid map with topological and metric representations. A local A* algorithm pre-plans and saves local paths in local metric maps, saving them into the topological structure. Then, a graph-based A* performs a global search in the topological map, using the saved local paths to provide the full trajectory. Our results demonstrate that this solution could handle large maps (5 hectares) using just 0.002 % of the search space required by a previous solution.

2022

Bin Picking Approaches Based on Deep Learning Techniques: A State-of-the-Art Survey

Authors
Cordeiro, A; Rocha, LF; Costa, C; Costa, P; Silva, MF;

Publication
2022 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC)

Abstract
Bin picking is a highly researched topic, due to the need for automated procedures in industrial environments. A general bin picking system requires a highly structured process, starting with data acquisition, and ending with pose estimation and grasping. A high number of bin picking problems are being presently solved, through deep learning networks, combined with distinct procedures. This study provides a comprehensive review of deep learning approaches, implemented in bin picking problems. Throughout the review are described several approaches and learning methods based on specific domains, such as gripper oriented and object oriented, as well as summarized several methodologies, in order to solve bin picking issues. Furthermore, are introduced current strategies used to simplify particular cases and at last, are presented peculiar means of detecting object poses.

2023

Modelling of a Vibration Robot Using Localization Ground Truth Assisted by ArUCo Markers

Authors
Matos, D; Lima, J; Rohrich, R; Oliveira, A; Valente, A; Costa, P; Costa, P;

Publication
ROBOTICS IN NATURAL SETTINGS, CLAWAR 2022

Abstract
Simulators have been increasingly used on development and tests on several areas. They allow to speed up the development without damage and no extra costs. On realistic simulators, where kinematics play an important role, the modelling process should be imported for each component to be accurately simulated. Some robots are not yet modelled, as for example the Monera. This paper presents a model of a small vibration robot (Monera) that is acquired in a developed test-bed. A localisation ground truth is used to acquire the position of the Monera with actuating it. Linear and angular speeds acquired from real experiments allow to validate the proposed methodology.

2023

Multi-robot Coordination for a Heterogeneous Fleet of Robots

Authors
Pereira, D; Matos, D; Rebelo, P; Ribeiro, F; Costa, P; Lima, J;

Publication
ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 2

Abstract
There is an increasing need for autonomous mobile robots (AMRs) in industrial environments. The capability of autonomous movement and transportation of items in industrial environments provides a significant increase in productivity and efficiency. This need, coupled with the possibility of controlling groups of heterogeneous robots, simultaneously addresses a wide range of tasks with different characteristics in the same environment, further increasing productivity and efficiency. This paper will present an implementation of a system capable of coordinating a fleet of heterogeneous robots with robustness. The implemented system must be able to plan a safe and efficient path for these different robots. To achieve this task, the TEA* (Time Enhanced A*) graph search algorithm will be used to coordinate the paths of the robots, along with a graph decomposition module that will be used to improve the efficiency and safety of this system. The project was implemented using the ROS framework and the Stage simulator. Results validate the proposed approach since the system was able to coordinate a fleet of robots in various different tests efficiently and safely, given the heterogeneity of the robots.

  • 7
  • 8