Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Hélder Martins Fontes

2023

Rate Adaptation Aware Positioning for Flying Gateways Using Reinforcement Learning

Authors
Pantaleão, G; Queirós, R; Fontes, H; Campos, R;

Publication
Simulation Tools and Techniques - 15th EAI International Conference, SIMUtools 2023, Seville, Spain, December 14-15, 2023, Proceedings

Abstract
With the growing connectivity demands, Unmanned Aerial Vehicles (UAVs) have emerged as a prominent component in the deployment of Next Generation On-demand Wireless Networks. However, current UAV positioning solutions typically neglect the impact of Rate Adaptation (RA) algorithms or simplify its effect by considering ideal and non-implementable RA algorithms. This work proposes the Rate Adaptation aware RL-based Flying Gateway Positioning (RARL) algorithm, a positioning method for Flying Gateways that applies Deep Q-Learning, accounting for the dynamic data rate imposed by the underlying RA algorithm. The RARL algorithm aims to maximize the throughput of the flying wireless links serving one or more Flying Access Points, which in turn serve ground terminals. The performance evaluation of the RARL algorithm demonstrates that it is capable of taking into account the effect of the underlying RA algorithm and achieve the maximum throughput in all analysed static and mobile scenarios. © ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2024.

2023

RateRL: A Framework for Developing RL-Based Rate Adaptation Algorithms in ns-3

Authors
Queirós, R; Ferreira, L; Fontes, H; Campos, R;

Publication
Simulation Tools and Techniques - 15th EAI International Conference, SIMUtools 2023, Seville, Spain, December 14-15, 2023, Proceedings

Abstract

2023

Trajectory-Aware Rate Adaptation for Flying Networks

Authors
Queirós, R; Ruela, J; Fontes, H; Campos, R;

Publication
Simulation Tools and Techniques - 15th EAI International Conference, SIMUtools 2023, Seville, Spain, December 14-15, 2023, Proceedings

Abstract

2022

SurFABle: An Algorithm for Placing and Allocating Communications Resources in Slicing-aware Flying Access and Backhaul Networks

Authors
Coelho, A; Rodrigues, J; Fontes, H; Campos, R; Ricardo, M;

Publication

Abstract
<p>Flying networks, composed of Unmanned Aerial Vehicles (UAVs) acting as mobile Base Stations and Access Points, have emerged to provide on-demand wireless connectivity, especially due to their positioning capability. Still, existing solutions are focused on improving aggregate network performance using a best-effort approach. This may compromise the use of multiple services with different performance requirements. Network slicing has emerged in 5G networks to address the problem, allowing to meet different Quality of Service (QoS) levels on top of a shared physical network infrastructure. However, Mobile Network Operators typically use fixed Base Stations to satisfy the requirements of different network slices, which may not be feasible due to limited resources and the dynamism of some scenarios.</p> <p>We propose an algorithm for enabling the joint placement and allocation of communications resources in Slicing-aware Flying Access and Backhaul networks – SurFABle. SurFABle allows the computation of the amount of communications resources needed, namely the number of UAVs acting as Flying Access Points and Flying Gateways, and their placement. The performance evaluation carried out by means of ns-3 simulations and an experimental testbed shows that SurFABle makes it possible to meet heterogeneous QoS levels of multiple network slices using the minimum number of UAVs.</p>

2022

SurFABle: An Algorithm for Placing and Allocating Communications Resources in Slicing-aware Flying Access and Backhaul Networks

Authors
Coelho, A; Rodrigues, J; Fontes, H; Campos, R; Ricardo, M;

Publication

Abstract
<p>Flying networks, composed of Unmanned Aerial Vehicles (UAVs) acting as mobile Base Stations and Access Points, have emerged to provide on-demand wireless connectivity, especially due to their positioning capability. Still, existing solutions are focused on improving aggregate network performance using a best-effort approach. This may compromise the use of multiple services with different performance requirements. Network slicing has emerged in 5G networks to address the problem, allowing to meet different Quality of Service (QoS) levels on top of a shared physical network infrastructure. However, Mobile Network Operators typically use fixed Base Stations to satisfy the requirements of different network slices, which may not be feasible due to limited resources and the dynamism of some scenarios.</p> <p>We propose an algorithm for enabling the joint placement and allocation of communications resources in Slicing-aware Flying Access and Backhaul networks – SurFABle. SurFABle allows the computation of the amount of communications resources needed, namely the number of UAVs acting as Flying Access Points and Flying Gateways, and their placement. The performance evaluation carried out by means of ns-3 simulations and an experimental testbed shows that SurFABle makes it possible to meet heterogeneous QoS levels of multiple network slices using the minimum number of UAVs.</p>

  • 5
  • 5