Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Pedro Pereira Rodrigues

2005

Learning decision trees from dynamic data streams

Authors
Gama, J; Medas, P; Rodrigues, P;

Publication
Proceedings of the ACM Symposium on Applied Computing

Abstract
This paper presents a system for induction of forest of functional trees from data streams able to detect concept drift. The Ultra Fast Forest of Trees (UFFT) is an incremental algorithm, that works online, processing each example in constant time, and performing a single scan over the training examples. It uses analytical techniques to choose the splitting criteria, and the information gain to estimate the merit of each possible splitting-test. For multi-class problems the algorithm grows a binary tree for each possible pair of classes, leading to a forest of trees. Decision nodes and leaves contain naive-Bayes classifiers playing different roles during the induction process. Naive-Bayes in leaves are used to classify test examples, naive-Bayes in inner nodes can be used as multivariate splitting-tests if chosen by the splitting criteria, and used to detect drift in the distribution of the examples that traverse the node. When a drift is detected, all the sub-tree rooted at that node will be pruned. The use of naive-Bayes classifiers at leaves to classify test examples, the use of splitting-tests based on the outcome of naive-Bayes, and the use of naive-Bayes classifiers at decision nodes to detect drift are directly obtained from the sufficient statistics required to compute the splitting criteria, without no additional computations. This aspect is a main advantage in the context of high-speed data streams. This methodology was tested with artificial and real-world data sets. The experimental results show a very good performance in comparison to a batch decision tree learner, and high capacity to detect and react to drift. Copyright 2005 ACM.

2009

Issues in Evaluation of Stream Learning Algorithms

Authors
Gama, J; Sebastiao, R; Rodrigues, PP;

Publication
KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING

Abstract
Learning from data streams is a research area of increasing importance. Nowadays, several stream learning algorithms have been developed. Most of them learn decision models that continuously evolve over time, run in resource-aware environments, detect and react to changes in the environment generating data. One important issue, not yet conveniently addressed, is the design of experimental work to evaluate and compare decision models that evolve over time. There are no golden standards for assessing performance in non-stationary environments. This paper proposes a general framework for assessing predictive stream learning algorithms. We defend the use of Predictive Sequential methods for error estimate - the prequential error. The prequential error allows us to monitor the evolution of the performance of models that evolve over time. Nevertheless, it is known to be a pessimistic estimator in comparison to holdout estimates. To obtain more reliable estimators we need some forgetting mechanism. Two viable alternatives are: sliding windows and fading factors. We observe that the prequential error converges to an holdout estimator when estimated over a sliding window or using fading factors. We present illustrative examples of the use of prequential error estimators, using fading factors, for the tasks of: i) assessing performance of a learning algorithm; ii) comparing learning algorithms; iii) hypothesis testing using McNemar test; and iv) change detection using Page-Hinkley test. In these tasks, the prequential error estimated using fading factors provide reliable estimators. In comparison to sliding windows, fading factors are faster and memory-less, a requirement for streaming applications. This paper is a contribution to a discussion in the good-practices on performance assessment when learning dynamic models that evolve over time.

2008

Online reliability estimates for individual predictions in data streams

Authors
Rodrigues, PP; Gama, J; Bosnic, Z;

Publication
Proceedings - IEEE International Conference on Data Mining Workshops, ICDM Workshops 2008

Abstract
Several predictive systems are nowadays vital for operations and decision support. The quality of these systems is most of the time defined by their average accuracy which has low or no information at all about the estimated error of each individual prediction. In many sensitive applications, users should be allowed to associate a measure of reliability to each prediction. In the case of batch systems, reliability measures have already been defined, mostly empirical measures as the estimation using the local sensitivity analysis. However, with the advent of data streams, these reliability estimates should also be computed online, based only on available data and current model's state. In this paper we define empirical measures to perform online estimation of reliability of individual predictions when made in the context of online learning systems. We present preliminary results and evaluate the estimators in two different problems. © 2008 IEEE.

2007

An overview on learning from data streams - Preface

Authors
Gama, J; Rodrigues, P; Aguilar Ruiz, J;

Publication
NEW GENERATION COMPUTING

Abstract

2010

A Simple Dense Pixel Visualization for Mobile Sensor Data Mining

Authors
Rodrigues, PP; Gama, J;

Publication
KNOWLEDGE DISCOVERY FROM SENSOR DATA

Abstract
Sensor data is usually represented by streaming time series. Current state-of-the-art systems for visualization include line plots and three-dimensional representations, which most of the time require screen resolutions that are not available in small transient mobile devices. Moreover, when data presents cyclic behaviors, such as in the electricity domain, predictive models may tend to give higher errors in certain recurrent points of time, but the human-eye is not trained to notice this cycles in a long stream. In these contexts, information is usually hard to extract from visualization. New visualization techniques may help to detect recurrent faulty predictions. En this paper we inspect visualization techniques in the scope of a real-world sensor network, quickly dwelling into future trends in visualization in transient mobile devices. We propose a simple dense pixel display visualization system, exploiting the benefits that it may represent on detecting and correcting recurrent faulty predictions. A case study is also presented, where a simple corrective strategy is studied in the context of global electrical load demand, exemplifying the utility of the new visualization method when compared with automatic detection of recurrent errors.

2009

An overview on mining data streams

Authors
Gama, J; Rodrigues, PP;

Publication
Studies in Computational Intelligence

Abstract
The most challenging applications of knowledge discovery involve dynamic environments where data continuous flow at high-speed and exhibit non-stationary properties. In this chapter we discuss the main challenges and issues when learning from data streams. In this work, we discuss the most relevant issues in knowledge discovery from data streams: incremental learning, cost-performance management, change detection, and novelty detection. We present illustrative algorithms for these learning tasks, and a real-world application illustrating the advantages of stream processing. The chapter ends with some open issues that emerge from this new research area. © 2009 Springer-Verlag Berlin Heidelberg.

  • 23
  • 29