2013
Authors
Rodrigues, PP; Dias, CC; Rocha, D; Boldt, I; Teixeira Pinto, A; Cruz Correia, R;
Publication
2013 IEEE 26TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS)
Abstract
The amount of data currently being produced, stored and used in hospital settings is stressing information technology infrastructure, making clinical reports to be stored in secondary memory devices. The aim of this work was to develop a model that predicts the probability of visualization, within a certain period after production, of each clinical report. We collected log data, from January 2013 till May 2011, from an existing virtual patient record, in a tertiary university hospital in Porto, Portugal, with information on report creation and report first-time visualization dates, along with contextual information. The main factors associated with visualization were defined using logistic regression. These factors were then used as explanatory variables for predicting the probability of a piece of information being accessed after production, using Kaplan-Meier analysis and the Weibull probability distribution. Clinical department, type of encounter and report type were found significantly associated with time-to-visualization and probability of visualization.
2017
Authors
Oliveira, R; Ferreira, J; Libanio, D; Dias, CC; Rodrigues, PP;
Publication
2017 IEEE 30TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS)
Abstract
Bayesian networks are one of the most intuitive statistical models for both estimation, classification and prediction of patients' outcomes. However, the availability of inference software in clinical settings is still limited. This work presents preliminary steps towards the creation of simple web-based forms that can access a powerful Bayesian network inference engine, making the derived models usable at bedside by both the clinicians and the patients themselves.
2015
Authors
Rodrigues, PP; Bifet, A; Krishnaswamy, S; Gama, J;
Publication
Proceedings of the ACM Symposium on Applied Computing
Abstract
2017
Authors
Ferreira Santos, D; Rodrigues, PP;
Publication
2017 IEEE 30TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS)
Abstract
In obstructive sleep apnea, respiratory effort is maintained but ventilation decreases/disappears because of the partial/total occlusion in the upper airway. It affects about 4% of men and 2% of women in the world population. The aim was to define an auxiliary diagnostic method that can support the decision to perform polysomnography (standard test), based on risk and diagnostic factors. Our sample performed polysomnography between January and May 2015. Two Bayesian classifiers were used to build the models: Naive Bayes (NB) and Tree augmented Naive Bayes (TAN), using all 39 variables or just a selection of 13. Area under the ROC curve, sensitivity, specificity, predictive values were evaluated using cross-validation. From a collected total of 241 patients, only 194 fulfill the inclusion criteria. 123 (63%) were male, with a mean age of 58 years old. 66 (34%) patients had a normal result and 128 (66%) a diagnostic of obstructive sleep apnea. The AUCs for each model were: NB39 - 72%; TAN39 - 79%; NB13 - 75% and TAN13 - 75%. The high (34%) proportion of normal results confirm the need for a pre-evaluation prior to polysomnography. The constant seeking of a validated model to screen patients with suspicion of obstructive sleep apnea is essential, especially at the level of primary care.
2017
Authors
Bamidis, P; Konstantinidis, S; Rodrigues, PP;
Publication
Proceedings - IEEE Symposium on Computer-Based Medical Systems
Abstract
2016
Authors
Dias, CC; Magro, F; Rodrigues, PP;
Publication
2016 IEEE 29TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS)
Abstract
Crohn's disease is one type of inflammatory bowel disease whose incidence is currently increasing, subject to relapse and disabling, with unknown etiology, and usually diagnosed between the second and third decade of life. The aim of this work is to develop a Bayesian network tool to predict disabling and reoperation in patients with Crohn's disease subject to early surgery or immunosuppressors intake. Multi-centric study data from patients with surgery or immunosuppression in the first six months after diagnosis was used, focusing on the prognosis and the analysis of factors' interaction. Patients were grouped by the index episode: immunosuppressors intake, and surgery (stratified considering the use or not of immunosuppressors 6 months after surgery). Patient group was associated with disease behavior, upper gastrointestinal tract location (L4) and age at diagnosis, while disease extent was associated to perianal disease. For disabling, association between perianal disease and gender and location was also found. Association between gender and L4 was also found for reoperation. The cross-validated discriminative power of the models were high for both disabling (above 70%) and reoperation (above 80%). The generated models presented interesting insights on factor interaction and predictive ability for the prognosis, supporting their use in future clinical decision support systems.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.