2022
Authors
Santos, LC; Santos, FN; Valente, A; Sobreira, H; Sarmento, J; Petry, M;
Publication
IEEE ACCESS
Abstract
The Agri-Food production requirements needs a more efficient and autonomous processes, and robotics will play a significant role in this process. Deploying agricultural robots on the farm is still a challenging task. Particularly in slope terrains, where it is crucial to avoid obstacles and dangerous steep slope zones. Path planning solutions may fail under several circumstances, as the appearance of a new obstacle. This work proposes a novel open-source solution called AgRobPP-CA to autonomously perform obstacle avoidance during robot navigation. AgRobPP-CA works in real-time for local obstacle avoidance, allowing small deviations, avoiding unexpected obstacles or dangerous steep slope zones, which could impose a fall of the robot. Our results demonstrated that AgRobPP-CA is capable of avoiding obstacles and high slopes in different vineyard scenarios, with low computation requirements. For example, in the last trial, AgRobPP-CA avoided a steep ramp that could impose a fall to the robot.
2022
Authors
Costa, GD; Petry, MR; Moreira, AP;
Publication
SENSORS
Abstract
With the continuously growing usage of collaborative robots in industry, the need for achieving a seamless human-robot interaction has also increased, considering that it is a key factor towards reaching a more flexible, effective, and efficient production line. As a prominent and prospective tool to support the human operator to understand and interact with robots, Augmented Reality (AR) has been employed in numerous human-robot collaborative and cooperative industrial applications. Therefore, this systematic literature review critically appraises 32 papers' published between 2016 and 2021 to identify the main employed AR technologies, outline the current state of the art of augmented reality for human-robot collaboration and cooperation, and point out future developments for this research field. Results suggest that this is still an expanding research field, especially with the advent of recent advancements regarding head-mounted displays (HMDs). Moreover, projector-based and HMDs developed approaches are showing promising positive influences over operator-related aspects such as performance, task awareness, and safety feeling, even though HMDs need further maturation in ergonomic aspects. Further research should focus on large-scale assessment of the proposed solutions in industrial environments, involving the solution's target audience, and on establishing standards and guidelines for developing AR assistance systems.
2022
Authors
Sousa, RB; Petry, MR; Costa, PG; Moreira, AP;
Publication
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS
Abstract
Odometry calibration adjusts the kinematic parameters or directly the robot's model to improve the wheeled odometry accuracy. The existent literature considers in the calibration procedure only one steering geometry (differential drive, Ackerman/tricycle, or omnidirectional). Our method, the OptiOdom calibration algorithm, generalizes the odometry calibration problem. It is developed an optimization-based approach that uses the improved Resilient Propagation without weight-backtracking (iRprop-) for estimating the kinematic parameters using only the position data of the robot. Even though a calibration path is suggested to be used in the calibration procedure, the OptiOdom method is not path-specific. In the experiments performed, the OptiOdom was tested using four different robots on a square, arbitrary, and suggested calibration paths. The OptiTrack motion capture system was used as a ground-truth. Overall, the use of OptiOdom led to improvements in the odometry accuracy (in terms of maximum distance and absolute orientation errors over the path) over the existent literature while being a generalized approach to the odometry calibration problem. The OptiOdom and the methods from the literature implemented in the article are available in GitHub as an open-source repository.
2023
Authors
Dias, J; Simoes, P; Soares, N; Costa, CM; Petry, MR; Veiga, G; Rocha, LF;
Publication
SENSORS
Abstract
Machine vision systems are widely used in assembly lines for providing sensing abilities to robots to allow them to handle dynamic environments. This paper presents a comparison of 3D sensors for evaluating which one is best suited for usage in a machine vision system for robotic fastening operations within an automotive assembly line. The perception system is necessary for taking into account the position uncertainty that arises from the vehicles being transported in an aerial conveyor. Three sensors with different working principles were compared, namely laser triangulation (SICK TriSpector1030), structured light with sequential stripe patterns (Photoneo PhoXi S) and structured light with infrared speckle pattern (Asus Xtion Pro Live). The accuracy of the sensors was measured by computing the root mean square error (RMSE) of the point cloud registrations between their scans and two types of reference point clouds, namely, CAD files and 3D sensor scans. Overall, the RMSE was lower when using sensor scans, with the SICK TriSpector1030 achieving the best results (0.25 mm +/- 0.03 mm), the Photoneo PhoXi S having the intermediate performance (0.49 mm +/- 0.14 mm) and the Asus Xtion Pro Live obtaining the higher RMSE (1.01 mm +/- 0.11 mm). Considering the use case requirements, the final machine vision system relied on the SICK TriSpector1030 sensor and was integrated with a collaborative robot, which was successfully deployed in an vehicle assembly line, achieving 94% success in 53,400 screwing operations.
2012
Authors
Paiva, M; Petry, M; Rossetti, RJF;
Publication
ICAART: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE, VOL 1
Abstract
Nowadays location systems are used within a large variety of applications. The application of these systems within indoor environments is already provided by several solutions. However, the need for high accuracy within these environments to pursue such purpose implies the use of specific infrastructures designed towards it. Our project tries to meet the requirements for a simple, low-cost, and scalable location system through different approaches. The main idea of it is to re-construct topological maps of indoor spaces through location estimation, i.e. using off-the-shelf technologies. We try to perform location estimations and then re-create the indoor maps as topological maps as a means of reducing the precision requirements other systems have, and develop a scalable and highly applicable system using sensors featuring mobile devices.
2012
Authors
Paiva, MA; Petry, M; Rossetti, RJF;
Publication
Proceedings of the ACM Symposium on Applied Computing, SAC 2012, Riva, Trento, Italy, March 26-30, 2012
Abstract
Nowadays location systems are used within a large variety of applications. The application of these systems within indoor environments is already provided by several solutions. However, the need for high accuracy within these environments to pursue such a purpose implies the use of specific infrastructures designed towards it. Our project tries to meet the requirements for a simple, low-cost, and scalable location system through different approaches. The main idea of it is to re-construct topological maps of indoor spaces through location estimation, and to serve as a means of reducing the precision requirements other systems may have to develop a scalable and highly applicable solution. © 2012 Authors.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.