Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CTM

2021

The central parsec of NGC 3783: a rotating broad emission line region, asymmetric hot dust structure, and compact coronal line region

Authors
Amorim, A; Baubock, M; Brandner, W; Bolzer, M; Clenet, Y; Davies, R; de Zeeuw, PT; Dexter, J; Drescher, A; Eckart, A; Eisenhauer, F; Schreiber, NMF; Gao, F; Garcia, PJV; Genzel, R; Gillessen, S; Gratadour, D; Honig, S; Kaltenbrunner, D; Kishimoto, M; Lacour, S; Lutz, D; Millour, F; Netzer, H; Ott, T; Paumard, T; Perraut, K; Perrin, G; Peterson, BM; Petrucci, PO; Pfuhl, O; Prieto, MA; Rouan, D; Sanchez Bermudez, J; Shangguan, J; Shimizu, T; Schartmann, M; Stadler, J; Sternberg, A; Straub, O; Straubmeier, C; Sturm, E; Tacconi, LJ; Tristram, KRW; Vermot, P; von Fellenberg, S; Waisberg, I; Widmann, F; Woillez, J;

Publication
ASTRONOMY & ASTROPHYSICS

Abstract
Using VLTI/GRAVITY and SINFONI data, we investigate the subparsec gas and dust structure around the nearby type 1 active galactic nucleus (AGN) hosted by NGC 3783. The K-band coverage of GRAVITY uniquely allows simultaneous analysis of the size and kinematics of the broad line region (BLR), the size and structure of the near-infrared(near-IR)-continuum-emitting hot dust, and the size of the coronal line region (CLR). We find the BLR, probed through broad Br gamma emission, to be well described by a rotating, thick disc with a radial distribution of clouds peaking in the inner region. In our BLR model, the physical mean radius of 16 light-days is nearly twice the ten-day time-lag that would be measured, which closely matches the ten-day time-lag that has been measured by reverberation mapping. We measure a hot dust full-width at half-maximum (FWHM) size of 0.74 mas (0.14 pc) and further reconstruct an image of the hot dust, which reveals a faint (5% of the total flux) offset cloud that we interpret as an accreting or outflowing cloud heated by the central AGN. Finally, we directly measure the FWHM size of the nuclear CLR as traced by the [Ca VIII] and narrow Br gamma line. We find a FWHM size of 2.2 mas (0.4 pc), fully in line with the expectation of the CLR located between the BLR and narrow line region. Combining all of these measurements together with larger scale near-IR integral field unit and mid-IR interferometry data, we are able to comprehensively map the structure and dynamics of gas and dust from 0.01 to 100 pc.

2021

The GRAVITY young stellar object survey: IV. The CO overtone emission in 51 Oph at sub-au scales

Authors
Koutoulaki, M; Lopez, RG; Natta, A; Fedriani, R; Garatti, ACO; Ray, TP; Coffey, D; Brandner, W; Dougados, C; Garcia, PJV; Klarmann, L; Labadie, L; Perraut, K; Sanchez Bermudez, J; Lin, CC; Amorim, A; Baubock, M; Benisty, M; Berger, JP; Buron, A; Caselli, P; Clenet, Y; du Foresto, VC; de Zeeuw, PT; Duvert, G; de Wit, W; Eckart, A; Eisenhauer, F; Filho, M; Gao, F; Gendron, E; Genzel, R; Gillessen, S; Grellmann, R; Habibi, M; Haubois, X; Haussmann, F; Henning, T; Hippler, S; Hubert, Z; Horrobin, M; Rosales, AJ; Jocou, L; Kervella, P; Kolb, J; Lacour, S; Le Bouquin, JB; Lena, P; Linz, H; Ott, T; Paumard, T; Perrin, G; Pfuhl, O; Ramirez Tannus, MC; Rau, C; Rousset, G; Scheithauer, S; Shangguan, J; Stadler, J; Straub, O; Straubmeier, C; Sturm, E; van Dishoeck, E; Vincent, F; von Fellenberg, S; Widmann, F; Wieprecht, E; Wiest, M; Wiezorrek, E; Yazici, S; Zins, G;

Publication
ASTRONOMY & ASTROPHYSICS

Abstract
Context. 51 Oph is a Herbig Ae/Be star that exhibits strong near-infrared CO ro-vibrational emission at 2.3 mu m, most likely originating in the innermost regions of a circumstellar disc.Aims. We aim to obtain the physical and geometrical properties of the system by spatially resolving the circumstellar environment of the inner gaseous disc.Methods. We used the second-generation Very Large Telescope Interferometer instrument GRAVITY to spatially resolve the continuum and the CO overtone emission. We obtained data over 12 baselines with the auxiliary telescopes and derive visibilities, and the differential and closure phases as a function of wavelength. We used a simple local thermal equilibrium ring model of the CO emission to reproduce the spectrum and CO line displacements.Results. Our interferometric data show that the star is marginally resolved at our spatial resolution, with a radius of similar to 10.58 2.65R(circle dot). The K-band continuum emission from the disc is inclined by 63 degrees +/- 1 degrees, with a position angle of 116 degrees +/- 1 degrees, and 4 +/- 0.8 mas (0.5 +/- 0.1 au) across. The visibilities increase within the CO line emission, indicating that the CO is emitted within the dust-sublimation radius. By modelling the CO bandhead spectrum, we derive that the CO is emitted from a hot (T = 1900-2800 K) and dense (N-CO = (0.9-9) x 10(21) cm(-2)) gas. The analysis of the CO line displacement with respect to the continuum allows us to infer that the CO is emitted from a region 0.10 +/- 0.02 au across, well within the dust-sublimation radius. The inclination and position angle of the CO line emitting region is consistent with that of the dusty disc.Conclusions. Our spatially resolved interferometric observations confirm the CO ro-vibrational emission within the dust-free region of the inner disc. Conventional disc models exclude the presence of CO in the dust-depleted regions of Herbig AeBe stars. Ad hoc models of the innermost disc regions, that can compute the properties of the dust-free inner disc, are therefore required.

2020

On the Reproduction of Real Wireless Channel Occupancy in ns-3

Authors
Cruz, R; Fontes, H; Ruela, J; Ricardo, M; Campos, R;

Publication
Proceedings of the 2020 Workshop on ns-3, WNS3 2020, Gaithersburg, MD, USA, June 17-18, 2020

Abstract
In wireless networking R&D we typically depend on simulation and experimentation to evaluate and validate new networking solutions. While simulations allow full control over the scenario conditions, real-world experiments are influenced by external random phenomena and may produce hardly repeatable and reproducible results, impacting the validation of the solution under evaluation. Previously, we have proposed the Trace-based Simulation (TS) approach to address the problem. TS uses traces of radio link quality and position of nodes to accurately reproduce past experiments in ns-3. Yet, in its current version, the TS approach is not compatible with scenarios where the radio spectrum is shared with concurrent networks, as it does not reproduce their channel occupancy. In this paper, we introduce the InterferencePropagationLossModel and a modified MacLow to allow reproducing the channel occupancy observed in past experiments using Wi-Fi. To validate the proposed models, the network throughput was measured in different experiments performed in the w-iLab.t testbed, controlling the channel occupancy introduced by concurrent networks. The experimental results were then compared with the network throughput achieved using the improved TS approach, the legacy TS approach, and pure simulation, validating the new proposed models and confirming their relevance to reproduce experiments previously executed in real environments. © 2020 ACM.

2020

Patch Antenna-in-Package for 5G Communications with Dual Polarization and High Isolation

Authors
Santos, H; Pinho, P; Salgado, H;

Publication
ELECTRONICS

Abstract
In this paper, we describe the design of a dual polarized packaged patch antenna for 5G communications with improved isolation and bandwidth for K-band. We introduce a differential feeding technique and a heuristic-based design of a matching network applied to a single layer patch antenna with parasitic elements. This approach resulted in broader bandwidth, reduced layer count, improved isolation and radiation pattern stability. The results were validated through finite element method (FEM) and method of moments (MoM) simulations. A peak gain of 5 dBi, isolation above 40 dB and a radiation efficiency of 60% were obtained.

2020

Design of an Anechoic Chamber for W-Band and mmWave

Authors
Pinho, P; Santos, H; Salgado, H;

Publication
ELECTRONICS

Abstract
In this paper, we describe the design of an electrically large anechoic chamber for usage on millimetre-wave bands. Ansys Savant sotware was used to perform a simulation of the chamber, using physical optics coupled with uniform theory of diffraction (PO/UTD). Moreover, a method based on an open waveguide probe is described in this paper to obtain the electrical properties of the RF absorbers at millimetre-wave frequencies. Two different source antennas were simulated in this work and the corresponding quiet zones predicted. The largest quiet zone was 30 mm x 30 mm x 50mm, for a chamber size of 1.2 m x 0.6 m x 0.6 m.

2020

LASER diode-based transmitter module for optical wireless communications

Authors
Araujo, JH; Kraemer, R; Santos, HM; Pereira, F; Salgado, HM; Pessoa, LM;

Publication
2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing, CSNDSP 2020

Abstract
In this paper, we present the design of an analog transmitter based on a blue LD targeting optical wireless communications, suitable for OFDM signals. The approach relies on a thorough characterization of the individual components of the module, whence a detailed circuit model is obtained to design an impedance matching circuit for improved performance, prior to fabrication. The impedance matching is based on non-uniform transmission lines and works well over a wide frequency range (100 MHz to 2 GHz). The results are experimentally validated by the transmitter response exhibiting an increased 6 dB bandwidth limit and 1 GHz bandwidth improvement. © 2020 IEEE.

  • 115
  • 369