Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CTM

2018

Are Deep Learning Methods Ready for Prime Time in Fingerprints Minutiae Extraction?

Authors
Rebelo, A; Oliveira, T; Correia, ME; Cardoso, JS;

Publication
Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications - 23rd Iberoamerican Congress, CIARP 2018, Madrid, Spain, November 19-22, 2018, Proceedings

Abstract
Currently the breakthroughs in most computer vision problems have been achieved by applying deep learning methods. The traditional methodologies that used to successfully discriminate the data features appear to be overwhelmed by the capabilities of learning of the deep network architectures. Nevertheless, many recent works choose to integrate the old handcrafted features into the deep convolutional networks to increase even more their impressive performance. In fingerprint recognition, the minutiae are specific points used to identify individuals and their extraction is a crucial module in a fingerprint recognition system. This can only be emphasized by the fact that the US Federal Bureau of Investigation (FBI) sets as a threshold for a positive identification a number of 8 common minutiae. Deep neural networks have been used to learn possible representations of fingerprint minutiae but, however surprisingly, in this paper it is shown that for now the best choice for an automatic minutiae extraction system is still the traditional road map. A comparison study was conducted with state-of-the-art methods and the best results were achieved by handcraft features. © Springer Nature Switzerland AG 2019.

2018

mu SmartScope: Towards a Fully Automated 3D-Printed Smartphone Microscope with Motorized Stage

Authors
Rosado, L; Silva, PT; Faria, J; Oliveira, J; Vasconcelos, MJM; Elias, D; da Costa, JMC; Cardoso, JS;

Publication
BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES (BIOSTEC 2017)

Abstract
Microscopic examination is the reference diagnostic method for several neglected tropical diseases. However, its quality and availability in rural endemic areas is often limited by the lack of trained personnel and adequate equipment. These drawbacks are closely related with the increasing interest in the development of computer-aided diagnosis systems, particularly distributed solutions that provide access to complex diagnosis in rural areas. In this work we present our most recent advances towards the development of a fully automated 3D-printed smartphone microscope with a motorized stage, termed mu SmartScope. The developed prototype allows autonomous acquisition of a pre-defined number of images at 1000x magnification, by using a motorized automated stage fully powered and controlled by a smartphone, without the need of manual focus. In order to validate the prototype as a reliable alternative to conventional microscopy, we evaluated the mu SmartScope performance in terms of: resolution; field of view; illumination; motorized stage performance (mechanical movement precision/resolution and power consumption); and automated focus. These results showed similar performances when compared with conventional microscopy, plus the advantage of being low-cost and easy to use, even for non-experts in microscopy. To extract these results, smears infected with blood parasites responsible for the most relevant neglected tropical diseases were used. The acquired images showed that it was possible to detect those agents through images acquired via the mu SmartScope, which clearly illustrate the huge potential of this device, specially in developing countries with limited access to healthcare services.

2018

Transfer learning approach for fall detection with the FARSEEING real-world dataset and simulated falls

Authors
Silva, J; Sousa, I; Cardoso, JS;

Publication
40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2018, Honolulu, HI, USA, July 18-21, 2018

Abstract
Falls are very rare and extremely difficult to acquire in free living conditions. Due to this, most of prior work on fall detection has focused on simulated datasets acquired in scenarios that mimic the real-world context, however, the validation of systems trained with simulated falls remains unclear. This work presents a transfer learning approach for combining a dataset of simulated falls and non-falls, obtained from young volunteers, with the real-world FARSEEING dataset, in order to train a set of supervised classifiers for discriminating between falls and non-falls events. The objective is to analyze if a combination of simulated and real falls could enrich the model. In the real-world, falls are a sporadic event, which results in imbalanced datasets. In this work, several methods for imbalance learning were employed: SMOTE, Balance Cascade and Ranking models. The Balance Cascade obtained less misclassifications in the validation set.There was an improvement when mixing the real falls and simulated non-falls compared to the case when only simulated falls were used for training. When testing with a mixed set with real falls and simulated non-falls, it is even more important to train with a mixed set. Moreover, it was possible to onclude that a model trained with simulated falls generalize better when tested with real falls, than the opposite. The overall accuracy obtained for the combination of different datasets were above 95 %. © 2018 IEEE.

2018

Ordinal Image Segmentation using Deep Neural Networks

Authors
Fernandes, K; Cardoso, JS;

Publication
2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN)

Abstract
Ordinal arrangement of objects is a common property in biomedical images. Traditional methods to deal with semantic image segmentation in this setting are ad-hoc and application specific. In this paper, we propose ordinal-aware deep learning architectures for image segmentation that enforce pixelwise consistency by construction. We validated the proposed architectures on several real-life biomedical datasets and achieved competitive results in all cases. © 2018 IEEE.

2018

Robust Clustering-based Segmentation Methods for Fingerprint Recognition

Authors
Ferreira, PM; Sequeira, AF; Cardoso, JS; Rebelo, A;

Publication
2018 INTERNATIONAL CONFERENCE OF THE BIOMETRICS SPECIAL INTEREST GROUP (BIOSIG)

Abstract
Fingerprint recognition has been widely studied for more than 45 years and yet it remains an intriguing pattern recognition problem. This paper focuses on the foreground mask estimation which is crucial for the accuracy of a fingerprint recognition system. The method consists of a robust cluster-based fingerprint segmentation framework incorporating an additional step to deal with pixels that were rejected as foreground in a decision considered not reliable enough. These rejected pixels are then further analysed for a more accurate classification. The procedure falls in the paradigm of classification with reject option- a viable option in several real world applications of machine learning and pattern recognition, where the cost of misclassifying observations is high. The present work expands a previous method based on the fuzzy C-means clustering with two variations regarding: i) the filters used; and ii) the clustering method for pixel classification as foreground/background. Experimental results demonstrate improved results on FVC datasets comparing with state-of-the-art methods even including methodologies based on deep learning architectures. © 2018 Gesellschaft fuer Informatik.

2018

Dimensional emotion recognition using visual and textual cues

Authors
Ferreira, PM; Pernes, D; Fernandes, K; Rebelo, A; Cardoso, JS;

Publication
CoRR

Abstract

  • 129
  • 324