2023
Authors
Jesus, LMT; Ferreira, JFS; Ferreira, AJS;
Publication
JASA EXPRESS LETTERS
Abstract
The temporal distribution of acoustic cues in whispered speech was analyzed using the gating paradigm. Fifteen Portuguese participants listened to real disyllabic words produced by four Portuguese speakers. Lexical choices, confidence scores, isolation points (IPs), and recognition points (RPs) were analyzed. Mixed effects models predicted that the first syllable and 70% of the total duration of the second syllable were needed for lexical choices to be above chance level. Fricatives' place, not voicing, had a significant effect on the percentage of correctly identified words. IP and RP values of words with postalveolar voiced and voiceless fricatives were significantly different.
2023
Authors
Oliveira, M; Almeida, V; Silva, J; Ferreira, A;
Publication
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Abstract
Cricket sounds are usually regarded as pleasant and, thus, can be used as suitable test signals in psychoacoustic experiments assessing the human listening acuity to specific temporal and spectral features. In addition, the simple structure of cricket sounds makes them prone to reverse engineering such that they can be analyzed and re-synthesized with desired alterations in their defining parameters. This paper describes cricket sounds from a parametric point of view, characterizes their main temporal and spectral features, namely jitter, shimmer and frequency sweeps, and explains a re-synthesis process generating modified natural cricket sounds. These are subsequently used in listening tests helping to shed light on the sound identification and discrimination capabilities of humans that are important, for example, in voice recognition. © 2023 IEEE.
2023
Authors
Coelho, A; Campos, R; Ricardo, M;
Publication
AD HOC NETWORKS
Abstract
Unmanned Aerial Vehicles (UAVs) have emerged as adequate platforms to carry communications nodes, including Wi-Fi Access Points and cellular Base Stations. This has led to the concept of flying networks composed of UAVs as a flexible and agile solution to provide on-demand wireless connectivity anytime, anywhere. However, state of the art works have been focused on optimizing the placement of the access network providing connectivity to ground users, overlooking the backhaul network design. In order to improve the overall Quality of Service (QoS) offered to ground users, the placement of Flying Gateways (FGWs) and the size of the queues configured in the UAVs need to be carefully defined to meet strict performance requirements. The main contribution of this article is a traffic-aware gateway placement and queue management (GPQM) algorithm for flying networks. GPQM takes advantage of knowing in advance the positions of the UAVs and their traffic demand to determine the FGW position and the queue size of the UAVs, in order to maximize the aggregate throughput and provide stochastic delay guarantees. GPQM is evaluated by means of ns-3 simulations, considering a realistic wireless channel model. The results demonstrate significant gains in the QoS offered when GPQM is used.
2023
Authors
Campos, R; Ricardo, M; Pouttu, A; Correia, LM;
Publication
EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING
Abstract
This Special Issue originates from the international conference 2021 Joint EuCNC & 6G Summit (Joint European Conference on Networks and Communications and 6G Summit), which was held in June 2021 in virtual format. The Technical Programme Chairs of the conference selected the best papers and invited authors to submit an extended version of their paper by at least one-third of their length. Only the top ranked papers were invited to this Special Issue, in order to fulfil its purpose. The main target was to collect and present quality research contributions in the most recent activities related to technologies, systems and networks beyond 5G. Through this Special Issue, the state-of-the-art is presented and the new challenges highlighted, regarding the latest advances on systems and network perspectives that are already being positioned beyond 5G, bridging as well with the evolution of 5G, including applications and trials. Therefore, the motivation for this Special Issue is to present the latest and finest results on the evolution of research of mobile and wireless communications, coming, but not exclusively (since Joint EuCNC & 6G Summit is a conference open to the whole research community), from projects co-financed by the European Commission within its R&D programmes.
2023
Authors
Shafafi, K; Almeida, EN; Coelho, A; Fontes, H; Ricardo, M; Campos, R;
Publication
Simulation Tools and Techniques - 15th EAI International Conference, SIMUtools 2023, Seville, Spain, December 14-15, 2023, Proceedings
Abstract
Unmanned Aerial Vehicles (UAVs) offer promising potential as communications node carriers, providing on-demand wireless connectivity to users. While existing literature presents various wireless channel models, it often overlooks the impact of UAV heading. This paper provides an experimental characterization of the Air-to-Ground (A2G) and Ground-to-Air (G2A) wireless channels in an open environment with no obstacles nor interference, considering the distance and the UAV heading. We analyze the received signal strength indicator and the TCP throughput between a ground user and a UAV, covering distances between 50 m and 500 m, and considering different UAV headings. Additionally, we characterize the antenna’s radiation pattern based on UAV headings. The paper provides valuable perspectives on the capabilities of UAVs in offering on-demand and dynamic wireless connectivity, as well as highlights the significance of considering UAV heading and antenna configurations in real-world scenarios.
2023
Authors
Almeida, EN; Fontes, H; Campos, R; Ricardo, M;
Publication
PROCEEDINGS OF THE 2023 WORKSHOP ON NS-3, WNS3 2023
Abstract
Digital twins have been emerging as a hybrid approach that combines the benefits of simulators with the realism of experimental testbeds. The accurate and repeatable set-ups replicating the dynamic conditions of physical environments, enable digital twins of wireless networks to be used to evaluate the performance of next-generation networks. In this paper, we propose the Position-based Machine Learning Propagation Loss Model (P-MLPL), enabling the creation of fast and more precise digital twins of wireless networks in ns-3. Based on network traces collected in an experimental testbed, the P-MLPL model estimates the propagation loss suffered by packets exchanged between a transmitter and a receiver, considering the absolute node's positions and the traffic direction. The P-MLPL model is validated with a test suite. The results show that the P-MLPL model can predict the propagation loss with a median error of 2.5 dB, which corresponds to 0.5x the error of existing models in ns-3. Moreover, ns-3 simulations with the P-MLPL model estimated the throughput with an error up to 2.5 Mbit/s, when compared to the real values measured in the testbed.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.