2024
Authors
Gomes, B; Soares, C; Torres, JM; Karmali, K; Karmali, S; Moreira, RS; Sobral, P;
Publication
SENSORS
Abstract
In Portugal, more than 98% of domestic cooking oil is disposed of improperly every day. This avoids recycling/reconverting into another energy. Is also may become a potential harmful contaminant of soil and water. Driven by the utility of recycled cooking oil, and leveraging the exponential growth of ubiquitous computing approaches, we propose an IoT smart solution for domestic used cooking oil (UCO) collection bins. We call this approach SWAN, which stands for Smart Waste Accumulation Network. It is deployed and evaluated in Portugal. It consists of a countrywide network of collection bin units, available in public areas. Two metrics are considered to evaluate the system's success: (i) user engagement, and (ii) used cooking oil collection efficiency. The presented system should (i) perform under scenarios of temporary communication network failures, and (ii) be scalable to accommodate an ever-growing number of installed collection units. Thus, we choose a disruptive approach from the traditional cloud computing paradigm. It relies on edge node infrastructure to process, store, and act upon the locally collected data. The communication appears as a delay-tolerant task, i.e., an edge computing solution. We conduct a comparative analysis revealing the benefits of the edge computing enabled collection bin vs. a cloud computing solution. The studied period considers four years of collected data. An exponential increase in the amount of used cooking oil collected is identified, with the developed solution being responsible for surpassing the national collection totals of previous years. During the same period, we also improved the collection process as we were able to more accurately estimate the optimal collection and system's maintenance intervals.
2024
Authors
Oliveira, JM; Ramos, P;
Publication
MATHEMATICS
Abstract
This study investigates the effectiveness of Transformer-based models for retail demand forecasting. We evaluated vanilla Transformer, Informer, Autoformer, PatchTST, and temporal fusion Transformer (TFT) against traditional baselines like AutoARIMA and AutoETS. Model performance was assessed using mean absolute scaled error (MASE) and weighted quantile loss (WQL). The M5 competition dataset, comprising 30,490 time series from 10 stores, served as the evaluation benchmark. The results demonstrate that Transformer-based models significantly outperform traditional baselines, with Transformer, Informer, and TFT leading the performance metrics. These models achieved MASE improvements of 26% to 29% and WQL reductions of up to 34% compared to the seasonal Na & iuml;ve method, particularly excelling in short-term forecasts. While Autoformer and PatchTST also surpassed traditional methods, their performance was slightly lower, indicating the potential for further tuning. Additionally, this study highlights a trade-off between model complexity and computational efficiency, with Transformer models, though computationally intensive, offering superior forecasting accuracy compared to the significantly slower traditional models like AutoARIMA. These findings underscore the potential of Transformer-based approaches for enhancing retail demand forecasting, provided the computational demands are managed effectively.
2024
Authors
Alves, VM; Cardoso, JD; Gama, J;
Publication
NUCLEAR MEDICINE AND MOLECULAR IMAGING
Abstract
Purpose 2-[F-18]FDG PET/CT plays an important role in the management of pulmonary nodules. Convolutional neural networks (CNNs) automatically learn features from images and have the potential to improve the discrimination between malignant and benign pulmonary nodules. The purpose of this study was to develop and validate a CNN model for classification of pulmonary nodules from 2-[F-18]FDG PET images.Methods One hundred thirteen participants were retrospectively selected. One nodule per participant. The 2-[F-18]FDG PET images were preprocessed and annotated with the reference standard. The deep learning experiment entailed random data splitting in five sets. A test set was held out for evaluation of the final model. Four-fold cross-validation was performed from the remaining sets for training and evaluating a set of candidate models and for selecting the final model. Models of three types of 3D CNNs architectures were trained from random weight initialization (Stacked 3D CNN, VGG-like and Inception-v2-like models) both in original and augmented datasets. Transfer learning, from ImageNet with ResNet-50, was also used.Results The final model (Stacked 3D CNN model) obtained an area under the ROC curve of 0.8385 (95% CI: 0.6455-1.0000) in the test set. The model had a sensibility of 80.00%, a specificity of 69.23% and an accuracy of 73.91%, in the test set, for an optimised decision threshold that assigns a higher cost to false negatives.Conclusion A 3D CNN model was effective at distinguishing benign from malignant pulmonary nodules in 2-[F-18]FDG PET images.
2024
Authors
Cruz, RPM; Shihavuddin, ASM; Maruf, MH; Cardoso, JS;
Publication
PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2023, PT I
Abstract
After the learning process, certain types of images may not be modeled correctly because they were not well represented in the training set. These failures can then be compensated for by collecting more images from the real-world and incorporating them into the learning process - an expensive process known as active learning. The proposed twist, called active supervision, uses the model itself to change the existing images in the direction where the boundary is less defined and requests feedback from the user on how the new image should be labeled. Experiments in the context of class imbalance show the technique is able to increase model performance in rare classes. Active human supervision helps provide crucial information to the model during training that the training set lacks.
2024
Authors
Nogueira, C; Fernandes, L; Fernandes, JND; Cardoso, JS;
Publication
SENSORS
Abstract
Deep learning has rapidly increased in popularity, leading to the development of perception solutions for autonomous driving. The latter field leverages techniques developed for computer vision in other domains for accomplishing perception tasks such as object detection. However, the black-box nature of deep neural models and the complexity of the autonomous driving context motivates the study of explainability in these models that perform perception tasks. Moreover, this work explores explainable AI techniques for the object detection task in the context of autonomous driving. An extensive and detailed comparison is carried out between gradient-based and perturbation-based methods (e.g., D-RISE). Moreover, several experimental setups are used with different backbone architectures and different datasets to observe the influence of these aspects in the explanations. All the techniques explored consist of saliency methods, making their interpretation and evaluation primarily visual. Nevertheless, numerical assessment methods are also used. Overall, D-RISE and guided backpropagation obtain more localized explanations. However, D-RISE highlights more meaningful regions, providing more human-understandable explanations. To the best of our knowledge, this is the first approach to obtaining explanations focusing on the regression of the bounding box coordinates.
2024
Authors
Fernandes, L; Fernandes, JND; Calado, M; Pinto, JR; Cerqueira, R; Cardoso, JS;
Publication
IEEE ACCESS
Abstract
Deep Learning models are automating many daily routine tasks, indicating that in the future, even high-risk tasks will be automated, such as healthcare and automated driving areas. However, due to the complexity of such deep learning models, it is challenging to understand their reasoning. Furthermore, the black box nature of the designed deep learning models may undermine public confidence in critical areas. Current efforts on intrinsically interpretable models focus only on classification tasks, leaving a gap in models for object detection. Therefore, this paper proposes a deep learning model that is intrinsically explainable for the object detection task. The chosen design for such a model is a combination of the well-known Faster-RCNN model with the ProtoPNet model. For the Explainable AI experiments, the chosen performance metric was the similarity score from the ProtoPNet model. Our experiments show that this combination leads to a deep learning model that is able to explain its classifications, with similarity scores, using a visual bag of words, which are called prototypes, that are learned during the training process. Furthermore, the adoption of such an explainable method does not seem to hinder the performance of the proposed model, which achieved a mAP of 69% in the KITTI dataset and a mAP of 66% in the GRAZPEDWRI-DX dataset. Moreover, our explanations have shown a high reliability on the similarity score.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.