2023
Authors
Albuquerque, T; Rosado, L; Cruz, RPM; Vasconcelos, MJM; Oliveira, T; Cardoso, JS;
Publication
Intell. Syst. Appl.
Abstract
Microscopic techniques in low-to-middle income countries are constrained by the lack of adequate equipment and trained operators. Since light microscopy delivers crucial methods for the diagnosis and screening of numerous diseases, several efforts have been made by the scientific community to develop low-cost devices such as 3D-printed portable microscopes. Nevertheless, these devices present some drawbacks that directly affect image quality: the capture of the samples is done via mobile phones; more affordable lenses are usually used, leading to poorer physical properties and images with lower depth of field; misalignments in the microscopic set-up regarding optical, mechanical, and illumination components are frequent, causing image distortions such as chromatic aberrations. This work investigates several pre-processing methods to tackle the presented issues and proposed a new workflow for low-cost microscopy. Additionally, two new deep learning models based on Convolutional Neural Networks are also proposed (EDoF-CNN-Fast and EDoF-CNN-Pairwise) to generate Extended Depth of Field (EDoF) images, and compared against state-of-the-art approaches. The models were tested using two different datasets of cytology microscopic images: public Cervix93 and a new dataset that has been made publicly available containing images captured with µSmartScope. Experimental results demonstrate that the proposed workflow can achieve state-of-the-art performance when generating EDoF images from low-cost microscopes. © 2022 The Author(s)
2023
Authors
Castro, E; Pereira, JC; Cardoso, JS;
Publication
MEDICAL IMAGE ANALYSIS
Abstract
Breast cancer is the most common and lethal form of cancer in women. Recent efforts have focused on developing accurate neural network-based computer-aided diagnosis systems for screening to help anticipate this disease. The ultimate goal is to reduce mortality and improve quality of life after treatment. Due to the difficulty in collecting and annotating data in this domain, data scarcity is - and will continue to be - a limiting factor. In this work, we present a unified view of different regularization methods that incorporate domain-known symmetries in the model. Three general strategies were followed: (i) data augmentation, (ii) invariance promotion in the loss function, and (iii) the use of equivariant architectures. Each of these strategies encodes different priors on the functions learned by the model and can be readily introduced in most settings. Empirically we show that the proposed symmetry-based regularization procedures improve generalization to unseen examples. This advantage is verified in different scenarios, datasets and model architectures. We hope that both the principle of symmetry-based regularization and the concrete methods presented can guide development towards more data-efficient methods for breast cancer screening as well as other medical imaging domains.
2023
Authors
Cruz, R; Silva, DTE; Goncalves, T; Carneiro, D; Cardoso, JS;
Publication
SENSORS
Abstract
Semantic segmentation consists of classifying each pixel according to a set of classes. Conventional models spend as much effort classifying easy-to-segment pixels as they do classifying hard-to-segment pixels. This is inefficient, especially when deploying to situations with computational constraints. In this work, we propose a framework wherein the model first produces a rough segmentation of the image, and then patches of the image estimated as hard to segment are refined. The framework is evaluated in four datasets (autonomous driving and biomedical), across four state-of-the-art architectures. Our method accelerates inference time by four, with additional gains for training time, at the cost of some output quality.
2023
Authors
Gouveia, M; Castro, E; Rebelo, A; Cardoso, JS; Patrão, B;
Publication
Proceedings of the 16th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2023, Volume 4: BIOSIGNALS, Lisbon, Portugal, February 16-18, 2023.
Abstract
2023
Authors
Montezuma, D; Oliveira, SP; Neto, PC; Oliveira, D; Monteiro, A; Cardoso, JS; Macedo-Pinto, I;
Publication
MODERN PATHOLOGY
Abstract
Training machine learning models for artificial intelligence (AI) applications in pathology often requires extensive annotation by human experts, but there is little guidance on the subject. In this work, we aimed to describe our experience and provide a simple, useful, and practical guide addressing annotation strategies for AI development in computational pathology. Annotation methodology will vary significantly depending on the specific study's objectives, but common difficulties will be present across different settings. We summarize key aspects and issue guiding principles regarding team interaction, ground-truth quality assessment, different annotation types, and available software and hardware options and address common difficulties while annotating. This guide was specifically designed for pathology annotation, intending to help pathologists, other researchers, and AI developers with this process.(c) 2022 THE AUTHORS. Published by Elsevier Inc. on behalf of the United States & Canadian Academy of Pathology. This is an open access article under the CC BY-NC-ND license (http://creativecommons. org/licenses/by-nc-nd/4.0/).
2023
Authors
Silva, W; Gonçalves, T; Härmä, K; Schröder, E; Obmann, VC; Barroso, MC; Poellinger, A; Reyes, M; Cardoso, JS;
Publication
Scientific Reports
Abstract
The original version of this Article contained an error in the Acknowledgements section. “This work was partially funded by the Project TAMI—Transparent Artificial Medical Intelligence (NORTE- 01-0247-FEDER-045905) financed by ERDF—European Regional Fund through the North Portugal Regional Operational Program—NORTE 2020 and by the Portuguese Foundation for Science and Technology—FCT under the CMU—Portugal International Partnership, and also by the Portuguese Foundation for Science and Technology—FCT within PhD grants SFRH/BD/139468/2018 and 2020.06434.BD. The authors thank the Swiss National Science Foundation grant number 198388, as well as the Lindenhof foundation for their grant support.” now reads: “This work was supported by National Funds through the Portuguese Funding Agency, FCT–Foundation for Science and Technology Portugal, under Project LA/P/0063/2020, and also by the Portuguese Foundation for Science and Technology - FCT within PhD grants SFRH/BD/139468/2018 and 2020.06434.BD. The authors thank the Swiss National Science Foundation grant number 198388, as well as the Lindenhof foundation for their grant support.” The original Article has been corrected. © The Author(s) 2023.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.