2024
Authors
Teixeira, M; Silva, F; Ferreira, RM; Pereira, T; Figueiredo, C; Oliveira, HP;
Publication
NPJ PRECISION ONCOLOGY
Abstract
Recent studies have shown that the microbiome can impact cancer development, progression, and response to therapies suggesting microbiome-based approaches for cancer characterization. As cancer-related signatures are complex and implicate many taxa, their discovery often requires Machine Learning approaches. This review discusses Machine Learning methods for cancer characterization from microbiome data. It focuses on the implications of choices undertaken during sample collection, feature selection and pre-processing. It also discusses ML model selection, guiding how to choose an ML model, and model validation. Finally, it enumerates current limitations and how these may be surpassed. Proposed methods, often based on Random Forests, show promising results, however insufficient for widespread clinical usage. Studies often report conflicting results mainly due to ML models with poor generalizability. We expect that evaluating models with expanded, hold-out datasets, removing technical artifacts, exploring representations of the microbiome other than taxonomical profiles, leveraging advances in deep learning, and developing ML models better adapted to the characteristics of microbiome data will improve the performance and generalizability of models and enable their usage in the clinic.
2024
Authors
Amaro, M; Oliveira, HP; Pereira, T;
Publication
2024 IEEE 37TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS 2024
Abstract
Lung Cancer (LC) is still among the top main causes of death worldwide, and it is the leading death number among other cancers. Several AI-based methods have been developed for the early detection of LC, trying to use Computed Tomography (CT) images to identify the initial signs of the disease. The survival prediction could help the clinicians to adequate the treatment plan and all the proceedings, by the identification of the most severe cases that need more attention. In this study, several deep learning models were compared to predict the survival of LC patients using CT images. The best performing model, a CNN with 3 layers, achieved an AUC value of 0.80, a Precision value of 0.56 and a Recall of 0.64. The obtained results showed that CT images carry information that can be used to assess the survival of LC.
2024
Authors
Fernandes, L; Pereira, T; Oliveira, HP;
Publication
2024 IEEE 37TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS 2024
Abstract
Currently, lung cancer is one of the deadliest diseases that affects millions of people globally. However, Artificial Intelligence is being increasingly integrated with healthcare practices, with the goal to aid in the early diagnosis of lung cancer. Although such methods have shown very promising results, they still lack transparency to the user, which consequently could make their generalised adoption a challenging task. Therefore, in this work we explore the use of post-hoc explainable methods, to better understand the inner-workings of an already established multitasking framework that executes the segmentation and the classification task of lung nodules simultaneously. The idea behind such study is to understand how a multitasking approach impacts the model's performance in the lung nodule classification task when compared to single-task models. Our results show that the multitasking approach works as an attention mechanism by aiding the model to learn more meaningful features. Furthermore, the multitasking framework was able to achieve a better performance in regard to the explainability metric, with an increase of 7% when compared to our baseline, and also during the classification and segmentation task, with an increase of 4.84% and 15.03%; for each task respectively, when also compared to the studied baselines.
2024
Authors
Oliveira L.M.; Pinheiro M.R.; Oliveira H.P.; Carvalho M.I.; Tuchin V.V.;
Publication
2024 International Conference Laser Optics Iclo 2024 Proceedings
Abstract
The refractive index of the pigs heart was measured at wavelengths between 255 and 850 nm to calculate the dispersion. The total transmittance and total reflectance spectra of the pig heart were measured between 200 and 1000 nm to calculate the spectral absorption coefficient. Using Kramers-Kronig relations, the dispersion of the heart was matched to experimental refractive index values.
2024
Authors
Pinheiro, MR; Carvalho, MI; Oliveira, LM;
Publication
JOURNAL OF BIOPHOTONICS
Abstract
Computer simulations, which are performed at a single wavelength at a time, have been traditionally used to estimate the optical properties of tissues. The results of these simulations need to be interpolated. For a broadband estimation of tissue optical properties, the use of computer simulations becomes time consuming and computer demanding. When spectral measurements are available for a tissue, the use of the photon diffusion approximation can be done to perform simple and direct calculations to obtain the broadband spectra of some optical properties. The additional estimation of the reduced scattering coefficient at a small number of discrete wavelengths allows to perform further calculations to obtain the spectra of other optical properties. This study used spectral measurements from the heart muscle to explain the calculation pipeline to obtain a complete set of the spectral optical properties and to show its versatility for use with other tissues for various biophotonics applications.
2024
Authors
Sangaiah, AK; Javadpour, A; Ja'fari, F; Pinto, P; Chuang, HM;
Publication
IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT
Abstract
The government and industry have given the recent development of the Internet of Things in the healthcare sector significant respect. Health service providers retain data gathered from many sources and are useful for patient diagnostics and research for pivotal analysis. However, sensitive personal information about a person is contained in healthcare data, which must be protected. Individual privacy protection is a crucial concern for both people and organizations, particularly when those firms must send user data to data centers due to data mining. This article investigated two general states of increasing entropy by changing the entropy of the class set of characteristics based on artificial intelligence and the k-anonymity model in privacy in context, and also three different strategies have been investigated, i.e., the strategy of selecting the feature with the lowest number of distinct values, selecting the feature with the lowest entropy, and selecting the feature with the highest entropy. For future tasks, we can find an optimal strategy that can help us to achieve optimal entropy in the least possible repetition. The results of our work have been compared by lightweight and MH-Internet of Things, FRUIT methods and shown that the proposed method has high efficiency in entropy criteria.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.