2023
Authors
Caldeira, E; Neto, PC; Gonçalves, T; Damer, N; Sequeira, AF; Cardoso, JS;
Publication
31st European Signal Processing Conference, EUSIPCO 2023, Helsinki, Finland, September 4-8, 2023
Abstract
Morphing attacks keep threatening biometric systems, especially face recognition systems. Over time they have become simpler to perform and more realistic, as such, the usage of deep learning systems to detect these attacks has grown. At the same time, there is a constant concern regarding the lack of interpretability of deep learning models. Balancing performance and interpretability has been a difficult task for scientists. However, by leveraging domain information and proving some constraints, we have been able to develop IDistill, an interpretable method with state-of-the-art performance that provides information on both the identity separation on morph samples and their contribution to the final prediction. The domain information is learnt by an autoencoder and distilled to a classifier system in order to teach it to separate identity information. When compared to other methods in the literature it outperforms them in three out of five databases and is competitive in the remaining. © 2023 European Signal Processing Conference, EUSIPCO. All rights reserved.
2023
Authors
Caetano, F; Carvalho, P; Cardoso, JS;
Publication
Intell. Syst. Appl.
Abstract
Deep learning has recently gained popularity in the field of video anomaly detection, with the development of various methods for identifying abnormal events in visual data. The growing need for automated systems to monitor video streams for anomalies, such as security breaches and violent behaviours in public areas, requires the development of robust and reliable methods. As a result, there is a need to provide tools to objectively evaluate and compare the real-world performance of different deep learning methods to identify the most effective approach for video anomaly detection. Current state-of-the-art metrics favour weakly-supervised strategies stating these as the best-performing approaches for the task. However, the area under the ROC curve, used to justify this statement, has been shown to be an unreliable metric for highly unbalanced data distributions, as is the case with anomaly detection datasets. This paper provides a new perspective and insights on the performance of video anomaly detection methods. It reports the results of a benchmark study with state-of-the-art methods using a novel proposed framework for evaluating and comparing the different models. The results of this benchmark demonstrate that using the currently employed set of reference metrics led to the misconception that weakly-supervised methods consistently outperform semi-supervised ones. © 2023 The Authors
2023
Authors
Cardoso, JS; Cruz, R; Albuquerque, T;
Publication
CoRR
Abstract
2023
Authors
Graham, S; Vu, QD; Jahanifar, M; Weigert, M; Schmidt, U; Zhang, W; Zhang, J; Yang, S; Xiang, J; Wang, X; Rumberger, JL; Baumann, E; Hirsch, P; Liu, L; Hong, C; Avilés Rivero, AI; Jain, A; Ahn, H; Hong, Y; Azzuni, H; Xu, M; Yaqub, M; Blache, MC; Piégu, B; Vernay, B; Scherr, T; Böhland, M; Löffler, K; Li, J; Ying, W; Wang, C; Kainmueller, D; Schönlieb, CB; Liu, S; Talsania, D; Meda, Y; Mishra, P; Ridzuan, M; Neumann, O; Schilling, MP; Reischl, M; Mikut, R; Huang, B; Chien, HC; Wang, CP; Lee, CY; Lin, HK; Liu, Z; Pan, X; Han, C; Cheng, J; Dawood, M; Deshpande, S; Saad Bashir, RM; Shephard, A; Costa, P; Nunes, JD; Campilho, A; Cardoso, JS; S, HP; Puthussery, D; G, DR; V, JC; Zhang, Y; Fang, Z; Lin, Z; Zhang, Y; Lin, C; Zhang, L; Mao, L; Wu, M; Vi Vo, TT; Kim, SH; Lee, T; Kondo, S; Kasai, S; Dumbhare, P; Phuse, V; Dubey, Y; Jamthikar, A; Le Vuong, TT; Kwak, JT; Ziaei, D; Jung, H; Miao, T; Snead, DRJ; Ahmed Raza, SE; Minhas, F; Rajpoot, NM;
Publication
CoRR
Abstract
2023
Authors
Neto, PC; Montezuma, D; de Oliveira, SP; Oliveira, D; Fraga, J; Monteiro, A; Monteiro, JC; Ribeiro, L; Gonçalves, S; Reinhard, S; Zlobec, I; Pinto, IM; Cardoso, JS;
Publication
CoRR
Abstract
2023
Authors
Neto, PC; Sequeira, AF; Cardoso, JS; Terhörst, P;
Publication
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 - Workshops, Vancouver, BC, Canada, June 17-24, 2023
Abstract
In the context of biometrics, matching confidence refers to the confidence that a given matching decision is correct. Since many biometric systems operate in critical decision-making processes, such as in forensics investigations, accurately and reliably stating the matching confidence becomes of high importance. Previous works on biometric confidence estimation can well differentiate between high and low confidence, but lack interpretability. Therefore, they do not provide accurate probabilistic estimates of the correctness of a decision. In this work, we propose a probabilistic interpretable comparison (PIC) score that accurately reflects the probability that the score originates from samples of the same identity. We prove that the proposed approach provides optimal matching confidence. Contrary to other approaches, it can also optimally combine multiple samples in a joint PIC score which further increases the recognition and confidence estimation performance. In the experiments, the proposed PIC approach is compared against all biometric confidence estimation methods available on four publicly available databases and five state-of-the-art face recognition systems. The results demonstrate that PIC has a significantly more accurate probabilistic interpretation than similar approaches and is highly effective for multi-biometric recognition. The code is publicly-available1. © 2023 IEEE.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.