Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CTM

2022

5G and governance through technology

Authors
Silva, HBGE; Ricardo, M;

Publication
EPTIC

Abstract
The fifth generation of mobile communications networks (5G) emerges with the potential to customize the technical parameters of the same physical infrastructure for each application, service, or user, which can compromise the fundamentals that made the Internet the leading platform for dissemi-nating information and a transnational instrument of collaboration of indi-viduals and institutions. In this scenario, the present study intends to ana-lyze this new technological standard, its influence on the informational flow of the Internet, and evaluate the role of information policy for the gover-nance of the multiple interests that permeate the digital ecosystem.

2022

Traffic-Aware UAV Placement using a Generalizable Deep Reinforcement Learning Methodology

Authors
Almeida, EN; Campos, R; Ricardo, M;

Publication
2022 27TH IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (IEEE ISCC 2022)

Abstract
Unmanned Aerial Vehicles (UAVs) acting as Flying Access Points (FAPs) are being used to provide on-demand wireless connectivity in extreme scenarios. Despite ongoing research, the optimization of UAVs' positions according to dynamic users' traffic demands remains challenging. We propose the Traffic-aware UAV Placement Algorithm (TUPA), which positions a UAV acting as FAP according to the users' traffic demands, in order to maximize the network utility. Using a DRL approach enables the FAP to autonomously learn and adapt to dynamic conditions and requirements of networking scenarios. Moreover, the proposed DRL methodology allows TUPA to generalize knowledge acquired during training to unknown combinations of users' positions and traffic demands, with no additional training. TUPA is trained and evaluated using network simulator ns-3 and ns3-gym framework. The results demonstrate that TUPA increases the network utility, compared to baseline solutions, increasing the average network utility up to 4x in scenarios with heterogeneous traffic demands.

2022

Obstacle-aware On-demand 5G Network using a Mobile Robotic Platform

Authors
Maia, D; Coelho, A; Ricardo, M;

Publication
2022 18TH INTERNATIONAL CONFERENCE ON WIRELESS AND MOBILE COMPUTING, NETWORKING AND COMMUNICATIONS (WIMOB)

Abstract
5G has become increasingly popular nowadays, mainly due to its characteristics which enable high data rates and low latency. At the same time, mobile robotic platforms, such as drones and robots, appeared as suitable platforms to carry radio stations, enabling the on-demand placement of 5G communications cells. The main contribution of this paper is an obstacle-aware on-demand 5G network. The proposed solution consists of a 5G radio station (gNB) carried by a mobile robotic platform capable of providing obstacle-aware wireless connectivity to 5G User Equipments (UEs), leveraged by a novel virtual network function - On-Demand Mobility Management Function (ODMMF). ODMMF is designed to integrate the 5G Core network and it allows to monitor the radio conditions provided to the served UEs, while enabling the positioning of the mobile robotic platform remotely by taking advantage of the visual information provided by on-board video cameras. The proposed solution was validated using an experimental prototype, under a representative networking scenario.

2022

Energy-aware relay positioning in flying networks

Authors
Rodrigues, H; Coelho, A; Ricardo, M; Campos, R;

Publication
INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS

Abstract
The ability to move and hover has made rotary-wing unmanned aerial vehicles (UAVs) suitable platforms to act as flying communications relays (FCRs), aiming at providing on-demand, temporary wireless connectivity when there is no network infrastructure available or a need to reinforce the capacity of existing networks. However, since UAVs rely on their on-board batteries, which can be drained quickly, they typically need to land frequently for recharging or replacing them, limiting their endurance and the flying network availability. The problem is exacerbated when a single FCR UAV is used. The FCR UAV energy is used for two main tasks: Communications and propulsion. The literature has been focused on optimizing both the flying network performance and energy efficiency from the communications point of view, overlooking the energy spent for the UAV propulsion. Yet, the energy spent for communications is typically negligible when compared with the energy spent for the UAV propulsion. In this article, we propose energy-aware relay positioning (EREP), an algorithm for positioning the FCR taking into account the energy spent for the UAV propulsion. Building upon the conclusion that hovering is not the most energy-efficient state, EREP defines the trajectory and speed that minimize the energy spent by the FCR UAV on propulsion, without compromising in practice the quality of service offered by the flying network. The EREP algorithm is evaluated using simulations. The obtained results show gains up to 26% in the FCR UAV endurance for negligible throughput and delay degradation.

2022

An Algorithm for Placing and Allocating Communications Resources Based on Slicing-Aware Flying Access and Backhaul Networks

Authors
Coelho, A; Rodrigues, J; Fontes, H; Campos, R; Ricardo, M;

Publication
IEEE ACCESS

Abstract
Flying networks, composed of Unmanned Aerial Vehicles (UAVs) acting as mobile Base Stations and Access Points, have emerged to provide on-demand wireless connectivity, especially due to their positioning capability. Still, existing solutions are focused on improving aggregate network performance using a best-effort approach. This may compromise the use of multiple services with different performance requirements. Network slicing has emerged in 5G networks to address the problem, allowing to meet different Quality of Service (QoS) levels on top of a shared physical network infrastructure. However, Mobile Network Operators typically use fixed Base Stations to satisfy the requirements of different network slices, which may not be feasible due to limited resources and the dynamism of some scenarios.We propose an algorithm for enabling the joint placement and allocation of communications resources in Slicing-aware Flying Access and Backhaul networks- SurFABle. SurFABle allows the computation of the amount of communications resources needed, namely the number of UAVs acting as Flying Access Points and Flying Gateways, and their placement. The performance evaluation carried out by means of ns-3 simulations and an experimental testbed shows that SurFABle makes it possible to meet heterogeneous QoS levels of multiple network slices using the minimum number of UAVs.

2022

Joint Energy and Performance Aware Relay Positioning in Flying Networks

Authors
Rodrigues, H; Coelho, A; Ricardo, M; Campos, R;

Publication
IEEE ACCESS

Abstract
Unmanned Aerial Vehicles (UAVs) have emerged as suitable platforms for transporting and positioning communications nodes on demand, including Wi-Fi Access Points and cellular Base Stations. This paved the way for the deployment of flying networks capable of temporarily providing wireless connectivity and reinforcing coverage and capacity of existing networks. Several solutions have been proposed for the positioning of UAVs acting as Flying Access Points (FAPs). Yet, the positioning of Flying Communications Relays (FCRs) in charge of forwarding the traffic to/from the Internet has not received equal attention. In addition, state of the art works are focused on optimizing both the flying network performance and the energy-efficiency from the communications point of view, leaving aside a relevant component: the energy spent for the UAV propulsion. We propose the Energy and Performance Aware relay Positioning (EPAP) algorithm. EPAP defines target performance-aware Signal-to-Noise Ratio (SNR) values for the wireless links established between the FCR UAV and the FAPs and, based on that, computes the trajectory to be completed by the FCR UAV so that the energy spent for the UAV propulsion is minimized. EPAP was evaluated in terms of both the flying network performance and the FCR UAV endurance, considering multiple networking scenarios. Simulation results show gains up to 25% in the FCR UAV endurance, while not compromising the Quality of Service offered by the flying network.

  • 40
  • 328