2021
Authors
Ramos, B; Pereira, T; Moranguinho, J; Morgado, J; Costa, JL; Oliveira, HP;
Publication
2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC)
Abstract
Lung cancer is the deadliest form of cancer, accounting for 20% of total cancer deaths. It represents a group of histologically and molecularly heterogeneous diseases even within the same histological subtype. Moreover, accurate histological subtype diagnosis influences the specific subtype's target genes, which will help define the treatment plan to target those genes in therapy. Deep learning (DL) models seem to set the benchmarks for the tasks of cancer prediction and subtype classification when using gene expression data; however, these methods do not provide interpretability, which is great concern from the perspective of cancer biology since the identification of the cancer driver genes in an individual provides essential information for treatment and prognosis. In this work, we identify some limitations of previous work that showed efforts to build algorithms to extract feature weights from DL models, and we propose using tree-based learning algorithms that address these limitations. Preliminary results show that our methods outperform those of related research while providing model interpretability.
2021
Authors
Moranguinho, J; Pereira, T; Ramos, B; Morgado, J; Costa, JL; Oliveira, HP;
Publication
2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC)
Abstract
Deep Neural Networks using histopathological images as an input currently embody one of the gold standards in automated lung cancer diagnostic solutions, with Deep Convolutional Neural Networks achieving the state of the art values for tissue type classification. One of the main reasons for such results is the increasing availability of voluminous amounts of data, acquired through the efforts employed by extensive projects like The Cancer Genome Atlas. Nonetheless, whole slide images remain weakly annotated, as most common pathologist annotations refer to the entirety of the image and not to individual regions of interest in the patient's tissue sample. Recent works have demonstrated Multiple Instance Learning as a successful approach in classification tasks entangled with this lack of annotation, by representing images as a bag of instances where a single label is available for the whole bag. Thus, we propose a bag/embedding-level lung tissue type classifier using Multiple Instance Learning, where the automated inspection of lung biopsy whole slide images determines the presence of cancer in a given patient. Furthermore, we use a post-model interpretability algorithm to validate our model's predictions and highlight the regions of interest for such predictions.
2021
Authors
Pedreira, V; Barros, D; Pinto, P;
Publication
SENSORS
Abstract
The concepts brought by Industry 4.0 have been explored and gradually applied.The cybersecurity impacts on the progress of Industry 4.0 implementations and their interactions with other technologies require constant surveillance, and it is important to forecast cybersecurity-related challenges and trends to prevent and mitigate these impacts. The contributions of this paper are as follows: (1) it presents the results of a systematic review of industry 4.0 regarding attacks, vulnerabilities and defense strategies, (2) it details and classifies the attacks, vulnerabilities and defenses mechanisms, and (3) it presents a discussion of recent challenges and trends regarding cybersecurity-related areas for Industry 4.0. From the systematic review, regarding the attacks, the results show that most attacks are carried out on the network layer, where dos-related and mitm attacks are the most prevalent ones. Regarding vulnerabilities, security flaws in services and source code, and incorrect validations in authentication procedures are highlighted. These are vulnerabilities that can be exploited by dos attacks and buffer overflows in industrial devices and networks. Regarding defense strategies, Blockchain is presented as one of the most relevant technologies under study in terms of defense mechanisms, thanks to its ability to be used in a variety of solutions, from Intrusion Detection Systems to the prevention of Distributed dos attacks, and most defense strategies are presented as an after-attack solution or prevention, in the sense that the defense mechanisms are only placed or thought, only after the harm has been done, and not as a mitigation strategy to prevent the cyberattack. Concerning challenges and trends, the review shows that digital sovereignty, cyber sovereignty, and data sovereignty are recent topics being explored by researchers within the Industry 4.0 scope, and GAIA-X and International Data Spaces are recent initiatives regarding data sovereignty. A discussion of trends is provided, and future challenges are pointed out.
2021
Authors
Araújo, R; Pinto, A; Pinto, P;
Publication
ICT Systems Security and Privacy Protection - 36th IFIP TC 11 International Conference, SEC 2021, Oslo, Norway, June 22-24, 2021, Proceedings
Abstract
Vulnerability scanning tools can help secure the computer networks of organisations. Triggered by the release of the Tsunami vulnerability scanner by Google, the authors analysed and compared the commonly used, free-to-use vulnerability scanners. The performance, accuracy and precision of these scanners are quite disparate and vary accordingly to the target systems. The computational, memory and network resources required be these scanners also differ. We present a recent and detailed comparison of such tools that are available for use by organisations with lower resources such as small and medium-sized enterprises. © 2021, IFIP International Federation for Information Processing.
2021
Authors
Torres, N; Pinto, P; Lopes, SI;
Publication
APPLIED SCIENCES-BASEL
Abstract
Due to its pervasive nature, the Internet of Things (IoT) is demanding for Low Power Wide Area Networks (LPWAN) since wirelessly connected devices need battery-efficient and long-range communications. Due to its low-cost and high availability (regional/city level scale), this type of network has been widely used in several IoT applications, such as Smart Metering, Smart Grids, Smart Buildings, Intelligent Transportation Systems (ITS), SCADA Systems. By using LPWAN technologies, the IoT devices are less dependent on common and existing infrastructure, can operate using small, inexpensive, and long-lasting batteries (up to 10 years), and can be easily deployed within wide areas, typically above 2 km in urban zones. The starting point of this work was an overview of the security vulnerabilities that exist in LPWANs, followed by a literature review with the main goal of substantiating an attack vector analysis specifically designed for the IoT ecosystem. This methodological approach resulted in three main contributions: (i) a systematic review regarding cybersecurity in LPWANs with a focus on vulnerabilities, threats, and typical defense strategies; (ii) a state-of-the-art review on the most prominent results that have been found in the systematic review, with focus on the last three years; (iii) a security analysis on the recent attack vectors regarding IoT applications using LPWANs. Results have shown that LPWANs communication technologies contain security vulnerabilities that can lead to irreversible harm in critical and non-critical IoT application domains. Also, the conception and implementation of up-to-date defenses are relevant to protect systems, networks, and data.
2021
Authors
Torres, N; Martins, P; Pinto, P; Lopes, SI;
Publication
PROCEEDINGS OF 2021 16TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI'2021)
Abstract
Changing mobility behaviors in academia - such as encouraging the use of bicycles - can help to reduce CO2 emissions since trips made by car or motorbikes tend to effectively reduce. Additionally, by obtaining mobility-related data we can infer patterns, optimize mobility and strengthen more sustainable habits within academia. In this paper, we propose a secure LoRa-based tracking system for the BIRA bicycle. The BIRA bicycle is an initiative of Instituto Politecnico de Viana do Castelo (IPVC) that aims to promote bicycle usage on campus, by encouraging the adoption of more sustainable mobility habits within the institution. The proposed system consists of BIRA bicycles equipped with low-cost GPS trackers. The collected data is then transmitted using a LoRaWAN infrastructure to an application server, which is responsible for storing and serving the client application with several contextual information, such as location, route, speed, and battery level. The results have shown that the proposed system is a viable low-cost solution for tracking bicycles and users' habits at a campus or even a city level.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.