Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by CTM

2019

Green Mobile Networks for 5G and Beyond

Authors
Masoudi, M; Khafagy, MG; Conte, A; El Amine, A; Francoise, B; Nadjahi, C; Salem, FE; Labidi, W; Sural, A; Gati, A; Bodere, D; Arikan, E; Aklamanu, F; Louahlia Gualous, H; Lallet, J; Pareek, K; Nuaymi, L; Meunier, L; Silva, P; Almeida, NT; Chahed, T; Sjolund, T; Cavdar, C;

Publication
IEEE ACCESS

Abstract
The heated 5G network deployment race has already begun with the rapid progress in standardization efforts, backed by the current market availability of 5G-enabled network equipment, ongoing 5G spectrum auctions, early launching of non-standalone 5G network services in a few countries, among others. In this paper, we study current and future wireless networks from the viewpoint of energy efficiency (EE) and sustainability to meet the planned network and service evolution toward, along, and beyond 5G, as also inspired by the findings of the EU Celtic-Plus SooGREEN Project. We highlight the opportunities seized by the project efforts to enable and enrich this green nature of the network as compared to existing technologies. In specific, we present innovative means proposed in SooGREEN to monitor and evaluate EE in 5G networks and beyond. Further solutions are presented to reduce energy consumption and carbon footprint in the different network segments. The latter spans proposed virtualized/cloud architectures, efficient polar coding for fronthauling, mobile network powering via renewable energy and smart grid integration, passive cooling, smart sleeping modes in indoor systems, among others. Finally, we shed light on the open opportunities yet to be investigated and leveraged in future developments.

2019

Resonant tunneling diode photodetectors for optical communications

Authors
Watson, S; Zhang, WK; Tavares, J; Figueiredo, J; Cantu, H; Wang, J; Wasige, E; Salgado, H; Pessoa, L; Kelly, A;

Publication
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS

Abstract
Optical modulation characteristics of resonant tunneling diode photodetectors (RTD-PD) are investigated. Intensity modulated light excites the RTD-PDs to conduct data experiments. Simple and complex data patterns are used with results showing data rates up to 80 and 200 Mbit/s, respectively. This is the first demonstration of complex modulation using resonant tunneling diodes.

2019

Optical direct intensity modulation of a 79GHz resonant tunneling diode-photodetector oscillator

Authors
Zhang, WK; Watson, S; Figueiredo, J; Wang, J; Cantu, HI; Tavares, J; Pessoa, L; Al Khalidi, A; Salgado, H; Wasige, E; Kelly, AE;

Publication
OPTICS EXPRESS

Abstract
We report on the direct intensity modulation characteristics of a high-speed resonant tunneling diode-photodetector (RTD-PD) with an oscillation frequency of 79 GHz. This work demonstrates both electrical and optical modulation and shows that RTD-PD oscillators can be utilized as versatile optoelectronic/radio interfaces. This is the first demonstration of optical modulation of an RF carrier using integrated RTD-PD oscillators at microwave frequencies. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.

2019

Meander-Line Monopole Antenna With Compact Ground Plane for a Bluetooth System-in-Package

Authors
Santos, HM; Pinho, P; Silva, RP; Pinheiro, M; Salgado, HM;

Publication
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS

Abstract
In this letter, a packaged compact meander-line monopole antenna for Bluetooth communications, manufactured in low-density fan-out technology, is presented. A combined size for the antenna and ground plane of 0.1 lambda(0) x 0.06 lambda(0) x 0.008 lambda(0) is obtained. Such small antennas are usually designed considering their connection to an evaluation board with a large ground plane, which improves their gain and bandwidth, but in this letter, the antenna is designed so it can work standalone without any further connection to printed circuit boards. The challenge of designing such a compact antenna is surpassed by performing a detailed modeling of the radiating meander-line element altogether with its finite ground plane, a tuning inductor, and an inductive coupling feed. The antenna model is developed in Ansys HFSS using the finite element method, which is later validated experimentally. Measurements of the return loss radiation pattern are carried out, and final results show a -6 dB bandwidth of approximately 110 MHz and a gain of -8.7 dBi, at 2.42 GHz.

2019

Design of an underwater sensor network perpetually powered from AUVs

Authors
Pessoa L.M.; Duarte C.; Salgado H.M.; Correia V.; Ferreira B.; Cruz N.A.; Matos A.;

Publication
OCEANS 2019 - Marseille, OCEANS Marseille 2019

Abstract
In this paper we evaluate the long-term deployment feasibility of a large-scale network of abandoned underwater sensors, where power is provided by autonomous underwater vehicles (AUVs) in periodic visits.

2019

Monte Carlo Radiative Transfer Modeling of Underwater Channel

Authors
M.G. Kraemer, R; M. Pessoa, L; M. Salgado, H;

Publication
Wireless Mesh Networks - Security, Architectures and Protocols [Working Title]

Abstract

  • 98
  • 324