2017
Authors
Coelho, L; Agostinho Moreira, JA; Tavares, PB; Santos, JL; Viegas, D; de Almeida, JMMM;
Publication
SENSORS AND ACTUATORS A-PHYSICAL
Abstract
Long period fiber gratings (LPFGs) were used to monitor the characteristics of copper (Cu) thin films when annealed in air atmosphere up to similar to 680 degrees C. The wavelength and the optical power shift of the resonant bands of the LPFGs when coated with the Cu thin films, were measured as a function of the annealing temperature, and were found to exhibit a different evolution comparing to a bare LPFGs. Thin films of Cu deposited on quartz (SiO2) substrates were annealed and analyzed by XRD, SEM/EDS and Raman spectroscopy, allowing to identify the formation of two distinct oxide phases at different temperatures, cuprous (Cu2O-cuprite) and cupric (CuO-tenorite) oxides, respectively. The observed features of the resonant bands of the LPFGs were found to be associated with the Cu oxide phase transitions, indicating the possibility of using LPFGs to monitor, in real time, the oxidation states of Cu thin films by following specific characteristics of the attenuation bands. In addition, LPFGs over coated with the two distinct oxidation phases of Cu were characterized for refractive index sensing in the range between 1.300 to 1.600, leading to the conclusion that the sensitivity to the refractive index of the surrounding medium of Cu coated LPFGs sensing systems can be temperature tuned.
2014
Authors
Moayyed, H; Leite, IT; Coelho, L; Santos, JL; Guerreiro, A; Viegas, D;
Publication
Latin America Optics and Photonics Conference, LAOP 2014
Abstract
The recent burst of R&D activity in Plasmonics, associated with the possibility of materials nanostructuring which enables the access to metamaterials, has been strongly impacting many branches of optics such as imaging, data recording and sensing. This talk details the factors that turned the combination Plasmonics and Metamaterials a huge opportunity to optical sensing.© OSA 2014.
2013
Authors
Moayyed, H; Leite, IT; Coelho, L; Santos, JL; Viegas, D;
Publication
8TH IBEROAMERICAN OPTICS MEETING AND 11TH LATIN AMERICAN MEETING ON OPTICS, LASERS, AND APPLICATIONS
Abstract
An analytical model based on geometrical optics and multilayer transfer matrix method is applied to determine the sensing properties of tapered optical fiber based SPR sensors incorporating bimetallic (Gold and Silver) layers, particularly when phase interrogation is considered. Phase interrogation is studied as a methodology to attain enhanced sensitivities. The performance of the sensing heads as function of the bimetallic layers and taper parameters is analyzed. It is shown the bimetallic combination is capable to provide larger values of sensitivity compared with the single layer approach. The results derived from this study are guiding the experimental study of these structures.
2014
Authors
Cennamo, N; Coelho, L; Guerreiro, A; Jorge, PAS; Zeni, L;
Publication
23RD INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS
Abstract
In this work we present a new low cost SPR (Surface Plasmon Resonance) sensor configuration based on efficient higher-order mode filtering in plastic multimode fibers, using a tapered POF (Plastic Optical Fiber) after the sensor system, without decreasing the sensitivity of the sensor. In particular, we present the experimental results obtained with this new configuration. The experimental results have shown as the tapered POF after the sensor system influences the performances in terms of refractive index range and Signal-to-Noise Ratio (SNR).
2014
Authors
Silva, S; Coelho, L; Frazao, O;
Publication
MEASUREMENT
Abstract
A gas pressure sensor based on an all-fiber Fabry-Perot interferometer (FFPI) is reported. The sensing head consists of a small section of silica rod spliced with a large offset between two single-mode fibers. The silica rod is used only as mechanical support so that an air cavity can be formed between both SMF. It is shown that the FFPI sensor is sensitive to gas pressure variation and when submitted to different gaseous environments, namely carbon dioxide, nitrogen and oxygen - sensitivities of 6.2, 4.1 and 3.6 nm/MPa, respectively, were attained. The refractive index change on nitrogen environment by means of gas pressure variation was also determined and a sensitivity of 1526 nm/RIU was obtained. The response of the sensing device to temperature variations in air was also studied and a sensitivity of -14 pm/degrees C was attained.
2015
Authors
Coelho, L; de Almeida, JMMM; Santos, JL; Viegas, D;
Publication
APPLIED OPTICS
Abstract
A study of a sensor for hydrogen (H-2) detection based on fiber Bragg gratings coated with palladium (Pd) with self-temperature compensation is presented. The cladding around the gratings was reduced down to 50 mu m diameter by a chemical etching process. One of the gratings was left uncoated, and the other was coated with 150 nm of Pd. It was observed that palladium hydride has unstable behavior in environments with high humidity level. A simple solution to overcome this problem based on a Teflon tape is presented. The sensing device studied was able to respond to H-2 concentrations in the range 0%-1% v/v at room temperature and atmospheric pressure, achieving sensitivities larger than 20 pm/% v/v. Considering H-2 concentrations in nitrogen up to 1%, the performance of the sensing head was characterized for different thicknesses of Pd coating ranging from 50 to 200 nm. (C) 2015 Optical Society of America
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.