Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Pavel Brazdil

2000

Cascade generalization

Authors
Gama, J; Brazdil, P;

Publication
MACHINE LEARNING

Abstract
Using multiple classifiers for increasing learning accuracy is an active research area. In this paper we present two related methods for merging classifiers. The first method, Cascade Generalization, couples classifiers loosely. It belongs to the family of stacking algorithms. The basic idea of Cascade Generalization is to use sequentially the set of classifiers, at each step performing an extension of the original data by the insertion of new attributes. The new attributes are derived from the probability class distribution given by a base classifier. This constructive step extends the representational language for the high level classifiers, relaxing their bias. The second method exploits tight coupling of classifiers, by applying Cascade Generalization locally. At each iteration of a divide and conquer algorithm, a reconstruction of the instance space occurs by the addition of new attributes. Each new attribute represents the probability that an example belongs to a class given by a base classifier. We have implemented three Local Generalization Algorithms. The first merges a linear discriminant with a decision tree, the second merges a naive Bayes with a decision tree, and the third merges a linear discriminant and a naive Bayes with a decision tree. All the algorithms show an increase of performance, when compared with the corresponding single models. Cascade also outperforms other methods for combining classifiers, like Stacked Generalization, and competes well against Boosting at statistically significant confidence levels.

1995

Characterization of Classification Algorithms

Authors
Gama, J; Brazdil, P;

Publication
Progress in Artificial Intelligence, 7th Portuguese Conference on Artificial Intelligence, EPIA '95, Funchal, Madeira Island, Portugal, October 3-6, 1995, Proceedings

Abstract
This paper is concerned with the problem of characterization of classification algorithms. The aim is to determine under what circumstances a particular classification algorithm is applicable. The method used involves generation of different kinds of models. These include regression and rule models, piecewise linear models (model trees) and instance based models. These are generated automatically on the basis of dataset characteristics and given test results. The lack of data is compensated for by various types of preprocessing. The models obtained are characterized by quantifying their predictive capability and the best models are identified. © Springer-Verlag Berlin Heidelberg 1995.

1999

Linear tree

Authors
Gama, J; Brazdil, P;

Publication
Intelligent Data Analysis

Abstract
In this paper we present system Ltree for propositional supervised learning. Ltree is able to define decision surfaces both orthogonal and oblique to the axes defined by the attributes of the input space. This is done combining a decision tree with a linear discriminant by means of constructive induction. At each decision node Ltree defines a new instance space by insertion of new attributes that are projections of the examples that fall at this node over the hyper-planes given by a linear discriminant function. This new instance space is propagated down through the tree. Tests based on those new attributes are oblique with respect to the original input space. Ltree is a probabilistic tree in the sense that it outputs a class probability distribution for each query example. The class probability distribution is computed at learning time, taking into account the different class distributions on the path from the root to the actual node. We have carried out experiments on twenty one benchmark datasets and compared our system with other well known decision tree systems (orthogonal and oblique) like C4.5, OC1, LMDT, and CART. On these datasets we have observed that our system has advantages in what concerns accuracy and learning times at statistically significant confidence levels.

2012

Text categorization using an ensemble classifier based on a mean co-association matrix

Authors
Moreira Matias, L; Mendes Moreira, J; Gama, J; Brazdil, P;

Publication
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Abstract
Text Categorization (TC) has attracted the attention of the research community in the last decade. Algorithms like Support Vector Machines, Naïve Bayes or k Nearest Neighbors have been used with good performance, confirmed by several comparative studies. Recently, several ensemble classifiers were also introduced in TC. However, many of those can only provide a category for a given new sample. Instead, in this paper, we propose a methodology - MECAC - to build an ensemble of classifiers that has two advantages to other ensemble methods: 1) it can be run using parallel computing, saving processing time and 2) it can extract important statistics from the obtained clusters. It uses the mean co-association matrix to solve binary TC problems. Our experiments revealed that our framework performed, on average, 2.04% better than the best individual classifier on the tested datasets. These results were statistically validated for a significance level of 0.05 using the Friedman Test. © 2012 Springer-Verlag.

1994

Characterizing the Applicability of Classification Algorithms Using Meta-Level Learning

Authors
Brazdil, P; Gama, J; Henery, B;

Publication
Machine Learning: ECML-94, European Conference on Machine Learning, Catania, Italy, April 6-8, 1994, Proceedings

Abstract

2009

Metalearning - Applications to Data Mining

Authors
Brazdil, P; Giraud Carrier, CG; Soares, C; Vilalta, R;

Publication
Cognitive Technologies

Abstract

  • 15
  • 22