2021
Authors
Oliveira, M; Oliveira, J; Camacho, R; Ferreira, C;
Publication
BIOSIGNALS: PROCEEDINGS OF THE 14TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES - VOL 4: BIOSIGNALS
Abstract
Cardiovascular diseases are one of the leading causes of death in the world. In low income countries, heart auscultation is of capital importance since it is an efficient and low cost method to monitor the heart. In this paper, we propose a multi-spot system that aims to detect cardiac anomalies and to support a diagnosis in remote areas with limited heath care response. Our proposed solutions exploits data collected from the four main auscultation spots: Mitral, Pulmonary, Tricuspid and Aorta in a asynchronous way. From the several multi-spot systems implemented, the best results were obtained using a bi-modal system that only processes the Mitral and the Pulmonary spot simultaneously. Using these two spots we have achieved an accuracy between 85.7% (smallest value, using ANN) and the best value of 91.4% (obtained with a logistic regression algorithm). Taking into a account the pediatric population and the incident cardiac pathologies, it happens to be the spots where the observed murmurs were most audible. We have also find out that when using four auscultation spots, the choice of the algorithm is of secondary priority, which does not seem to be the case for a single auscultation spot system. With one single auscultation we have an average of 4% of difference between the results obtained with the algorithms and with four auscultation spots we have a smaller average of 2.1%.
2021
Authors
Nogueira, AR; Gama, J; Ferreira, CA;
Publication
JOURNAL OF DYNAMICS AND GAMES
Abstract
Determining the cause of a particular event has been a case of study for several researchers over the years. Finding out why an event happens (its cause) means that, for example, if we remove the cause from the equation, we can stop the effect from happening or if we replicate it, we can create the subsequent effect. Causality can be seen as a mean of predicting the future, based on information about past events, and with that, prevent or alter future outcomes. This temporal notion of past and future is often one of the critical points in discovering the causes of a given event. The purpose of this survey is to present a cross-sectional view of causal discovery domain, with an emphasis in the machine learning/data mining area.
2021
Authors
Fares, AA; Vasconcelos, F; Mendes-Moreira, J; Ferreira, C;
Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE (EPIA 2021)
Abstract
Sustainable agricultural production requires a controlled usage of water, nutrients, and minerals from the environment. Different strategies of plant irrigation are being studied to control the quantity and quality balance of the fruits. Regarding efficient irrigation, particularly in deficit irrigation strategies, it is essential to act according to water stress status in the plant. For example, in the vine, to improve the quality of the grapes, the plants are deprived of water until they reach particular water stress before re-watered in specified phenological stages. The water status inside the plant is estimated by measuring either the Leaf Potential during the Predawn or soil water potential, along with the root zones. Measuring soil water potential has the advantage of being independent of diurnal atmospheric variations. However, this method has many logistic problems, making it very hard to apply along all the yard, especially the big ones. In this study, the Predawn Leaf Water Potential (PLWP) is daily predicted by Machine Learning models using data such as grapes variety, soil characteristics, irrigation schedules, and meteorological data. The benefits of these techniques are the reduction of the manual work of measuring PLWP and the capacity to implement those models on a larger scale by predicting PLWP up to 7 days which should enhance the ability to optimize the irrigation plan while the quantity and quality of the crop are under control.
2021
Authors
Nogueira, AR; Ferreira, C; Gama, J; Pinto, A;
Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE (EPIA 2021)
Abstract
One of the most significant challenges for machine learning nowadays is the discovery of causal relationships from data. This causal discovery is commonly performed using Bayesian like algorithms. However, more recently, more and more causal discovery algorithms have appeared that do not fall into this category. In this paper, we present a new algorithm that explores global causal association rules with Uncertainty Coefficient. Our algorithm, CRPA-UC, is a global structure discovery approach that combines the advantages of association mining with causal discovery and can be applied to binary and non-binary discrete data. This approach was compared to the PC algorithm using several well-known data sets, using several metrics.
2021
Authors
Oliveira, J; Nogueira, D; Renna, F; Ferreira, C; Jorge, AM; Coimbra, M;
Publication
2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC)
Abstract
Cardiac auscultation is the key screening procedure to detect and identify cardiovascular diseases (CVDs). One of many steps to automatically detect CVDs using auscultation, concerns the detection and delimitation of the heart sound boundaries, a process known as segmentation. Whether to include or not a segmentation step in the signal classification pipeline is nowadays a topic of discussion. Up to our knowledge, the outcome of a segmentation algorithm has been used almost exclusively to align the different signal segments according to the heartbeat. In this paper, the need for a heartbeat alignment step is tested and evaluated over different machine learning algorithms, including deep learning solutions. From the different classifiers tested, Gate Recurrent Unit (GRU) Network and Convolutional Neural Network (CNN) algorithms are shown to be the most robust. Namely, these algorithms can detect the presence of heart murmurs even without a heartbeat alignment step. Furthermore, Support Vector Machine (SVM) and Random Forest (RF) algorithms require an explicit segmentation step to effectively detect heart sounds and murmurs, the overall performance is expected drop approximately 5% on both cases.
2022
Authors
Oliveira, J; Renna, F; Costa, PD; Nogueira, M; Oliveira, C; Ferreira, C; Jorge, A; Mattos, S; Hatem, T; Tavares, T; Elola, A; Rad, AB; Sameni, R; Clifford, GD; Coimbra, MT;
Publication
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS
Abstract
Cardiac auscultation is one of the most cost-effective techniques used to detect and identify many heart conditions. Computer-assisted decision systems based on auscultation can support physicians in their decisions. Unfortunately, the application of such systems in clinical trials is still minimal since most of them only aim to detect the presence of extra or abnormal waves in the phonocardiogram signal, i.e., only a binary ground truth variable (normal vs abnormal) is provided. This is mainly due to the lack of large publicly available datasets, where a more detailed description of such abnormal waves (e.g., cardiac murmurs) exists. To pave the way to more effective research on healthcare recommendation systems based on auscultation, our team has prepared the currently largest pediatric heart sound dataset. A total of 5282 recordings have been collected from the four main auscultation locations of 1568 patients, in the process, 215780 heart sounds have been manually annotated. Furthermore, and for the first time, each cardiac murmur has been manually annotated by an expert annotator according to its timing, shape, pitch, grading, and quality. In addition, the auscultation locations where the murmur is present were identified as well as the auscultation location where the murmur is detected more intensively. Such detailed description for a relatively large number of heart sounds may pave the way for new machine learning algorithms with a real-world application for the detection and analysis of murmur waves for diagnostic purposes.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.