2026
Authors
Lourenço, CB; Pinto, JS;
Publication
SCIENCE OF COMPUTER PROGRAMMING
Abstract
In this paper, we introduce a novel approach for rigorously verifying safety properties of state machine specifications. Our method leverages an auto-active verifier and centers around the use of action functions annotated with contracts. These contracts facilitate inductive invariant checking, ensuring correctness during system execution. Our approach is further supported by the Why3-do library, which extends the Why3 tool's capabilities to verify concurrent and distributed algorithms using state machines. Two distinctive features of Why3-do are: (i) it supports specification refinement through refinement mappings, enabling hierarchical reasoning about distributed algorithms; and (ii) it can be easily extended to make verifying specific classes of systems more convenient. In particular, the library contains models allowing for message-passing algorithms to be described with programmed handlers, assuming different network semantics. A gallery of examples, all verified with Why3 using SMT solvers as proof tools, is also described in the paper. It contains several auto-actively verified concurrent and distributed algorithms, including the Paxos consensus algorithm.
2026
Authors
Silva, P; Macedo, N; Oliveira, JN;
Publication
Lecture Notes in Computer Science
Abstract
A key feature of model finding techniques allows users to enumerate and explore alternative solutions. However, it is challenging to guarantee that the generated instances are relevant to the user, representing effectively different scenarios. This challenge is exacerbated in quantitative modelling, where one must consider both the qualitative, structural part of a model, and the quantitative data on top of it. This results in a search space of possibly infinite candidate solutions, often infinitesimally similar to one another. Thus, research on instance enumeration in qualitative model finding is not directly applicable to the quantitative context, which requires more sophisticated methods to navigate the solution space effectively. The main goal of this paper is to explore a generic approach for navigating quantitative solution spaces and showcase different iteration operations, aiming to generate instances that differ considerably from those previously seen and promote a larger coverage of the search space. Such operations are implemented in QAlloy – a quantitative extension to Alloy – on top of Max-SMT solvers, and are evaluated against several examples ranging, in particular, over the integer and fuzzy domains. © 2025 Elsevier B.V., All rights reserved.
2026
Authors
Costa, L; Barbosa, S; Cunha, J;
Publication
Future Gener. Comput. Syst.
Abstract
In recent years, the research community, but also the general public, has raised serious questions about the reproducibility and replicability of scientific work. Since many studies include some kind of computational work, these issues are also a technological challenge, not only in computer science, but also in most research domains. Computational replicability and reproducibility are not easy to achieve due to the variety of computational environments that can be used. Indeed, it is challenging to recreate the same environment via the same frameworks, code, programming languages, dependencies, and so on. We propose a framework, known as SciRep, that supports the configuration, execution, and packaging of computational experiments by defining their code, data, programming languages, dependencies, databases, and commands to be executed. After the initial configuration, the experiments can be executed any number of times, always producing exactly the same results. Our approach allows the creation of a reproducibility package for experiments from multiple scientific fields, from medicine to computer science, which can be re-executed on any computer. The produced package acts as a capsule, holding absolutely everything necessary to re-execute the experiment. To evaluate our framework, we compare it with three state-of-the-art tools and use it to reproduce 18 experiments extracted from published scientific articles. With our approach, we were able to execute 16 (89%) of those experiments, while the others reached only 61%, thus showing that our approach is effective. Moreover, all the experiments that were executed produced the results presented in the original publication. Thus, SciRep was able to reproduce 100% of the experiments it could run. © 2025 The Authors
2025
Authors
Baccega, D; Aguilar, J; Baquero, C; Anta, AF; Ramirez, JM;
Publication
IEEE Access
Abstract
2025
Authors
Tinoco, D; Menezes, R; Baquero, C;
Publication
COMPUTATIONAL STATISTICS
Abstract
This paper presents a novel approach to classical linear regression, enabling accurate model computation from data streams or in a distributed setting while preserving data privacy in federated environments. We extend this framework to generalized linear models (GLMs), ensuring scalability and adaptability to diverse data distributions while maintaining privacy-preserving properties. To assess the effectiveness of our approach, we conduct numerical studies on both simulated and real datasets, comparing our method with conventional maximum likelihood estimation for GLMs using iteratively reweighted least squares. Our results demonstrate the advantages of the proposed method in distributed and federated settings.
2025
Authors
Dantas, A; Baquero, C;
Publication
PROCEEDINGS OF THE 12TH WORKSHOP ON PRINCIPLES AND PRACTICE OF CONSISTENCY FOR DISTRIBUTED DATA, PAPOC 2025
Abstract
Virtual presence demands ultra-low latency, a factor that centralized architectures, by their nature, cannot minimize. Local peer-to-peer architectures offer a compelling alternative, but also pose unique challenges in terms of network infrastructure. This paper introduces a prototype leveraging Conflict-Free Replicated Data Types (CRDTs) to enable real-time collaboration in a shared virtual environment. Using this prototype, we investigate latency, synchronization, and the challenges of decentralized coordination in dynamic non-Byzantine contexts. We aim to question prevailing assumptions about decentralized architectures and explore the practical potential of P2P in advancing virtual presence. This work challenges the constraints of mediated networks and highlights the potential of decentralized architectures to redefine collaboration and interaction in digital spaces.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.