Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by HASLab

2023

Machine-Checked Security for XMSS as in RFC 8391 and SPHINCS+

Authors
Barbosa, M; Dupressoir, F; Grégoire, B; Hülsing, A; Meijers, M; Strub, PY;

Publication
ADVANCES IN CRYPTOLOGY - CRYPTO 2023, PT V

Abstract
This work presents a novel machine-checked tight security proof for XMSS-a stateful hash-based signature scheme that is (1) standardized in RFC 8391 and NIST SP 800-208, and (2) employed as a primary building block of SPHINCS+, one of the signature schemes recently selected for standardization as a result of NIST's post-quantum competition. In 2020, Kudinov, Kiktenko, and Fedoro pointed out a flaw affecting the tight security proofs of SPHINCS+ and XMSS. For the case of SPHINCS+, this flaw was fixed in a subsequent tight security proof by Hulsing and Kudinov. Unfortunately, employing the fix from this proof to construct an analogous tight security proof for XMSS would merely demonstrate security with respect to an insufficient notion. At the cost of modeling the message-hashing function as a random oracle, we complete the tight security proof for XMSS and formally verify it using the EasyCrypt proof assistant. (Note that this merely extends the use of the random oracle model, as this model is already required in other parts of the security analysis to justify the currently standardized parameter values). As part of this endeavor, we formally verify the crucial step common to the security proofs of SPHINCS+ and XMSS that was found to be flawed before, thereby confirming that the core of the aforementioned security proof by Hulsing and Kudinov is correct. As this is the first work to formally verify proofs for hash-based signature schemes in EasyCrypt, we develop several novel libraries for the fundamental cryptographic concepts underlying such schemes-e.g., hash functions and digital signature schemes-establishing a common starting point for future formal verification efforts. These libraries will be particularly helpful in formally verifying proofs of other hash-based signature schemes such as LMS or SPHINCS+.

2023

Fixing and Mechanizing the Security Proof of Fiat-Shamir with Aborts and Dilithium

Authors
Barbosa, M; Barthe, G; Doczkal, C; Don, J; Fehr, S; Grégoire, B; Huang, YH; Hülsing, A; Lee, Y; Wu, XD;

Publication
ADVANCES IN CRYPTOLOGY - CRYPTO 2023, PT V

Abstract
We extend and consolidate the security justification for the Dilithium signature scheme. In particular, we identify a subtle but crucial gap that appears in several ROM and QROM security proofs for signature schemes that are based on the Fiat-Shamir with aborts paradigm, including Dilithium. The gap lies in the CMA-to-NMA reduction and was uncovered when trying to formalize a variant of the QROM security proof by Kiltz, Lyubashevsky, and Schaffner (Eurocrypt 2018). The gap was confirmed by the authors, and there seems to be no simple patch for it. We provide new, fixed proofs for the affected CMA-to-NMA reduction, both for the ROM and the QROM, and we perform a concrete security analysis for the case of Dilithium to show that the claimed security level is still valid after addressing the gap. Furthermore, we offer a fully mechanized ROM proof for the CMA-security of Dilithium in the EasyCrypt proof assistant. Our formalization includes several new tools and techniques of independent interest for future formal verification results.

2023

Execution Time Program Verification with Tight Bounds

Authors
Silva, AC; Barbosa, M; Florido, M;

Publication
PRACTICAL ASPECTS OF DECLARATIVE LANGUAGES, PADL 2023

Abstract
This paper presents a proof system for reasoning about execution time bounds for a core imperative programming language. Proof systems are defined for three different scenarios: approximations of the worst-case execution time, exact time reasoning, and less pessimistic execution time estimation using amortized analysis. We define a Hoare logic for the three cases and prove its soundness with respect to an annotated cost-aware operational semantics. Finally, we define a verification conditions (VC) generator that generates the goals needed to prove program correctness, cost, and termination. Those goals are then sent to the Easycrypt toolset for validation. The practicality of the proof system is demonstrated with an implementation in OCaml of the different modules needed to apply it to example programs. Our case studies are motivated by real-time and cryptographic software.

2023

Mechanized Proofs of Adversarial Complexity and Application to Universal Composability

Authors
Barbosa, M; Barthe, G; Gregoire, B; Koutsos, A; Strub, PY;

Publication
ACM TRANSACTIONS ON PRIVACY AND SECURITY

Abstract
In this work, we enhance the EasyCrypt proof assistant to reason about the computational complexity of adversaries. The key technical tool is a Hoare logic for reasoning about computational complexity (execution time and oracle calls) of adversarial computations. Our Hoare logic is built on top of the module system used by EasyCrypt for modeling adversaries. We prove that our logic is sound w.r.t. the semantics of EasyCrypt programs-we also provide full semantics for the EasyCrypt module system, which was lacking previously. We showcase (for the first time in EasyCrypt and in other computer-aided cryptographic tools) how our approach can express precise relationships between the probability of adversarial success and their execution time. In particular, we can quantify existentially over adversaries in a complexity class and express general composition statements in simulation-based frameworks. Moreover, such statements can be composed to derive standard concrete security bounds for cryptographic constructions whose security is proved in a modular way. As a main benefit of our approach, we revisit security proofs of some well-known cryptographic constructions and present a new formalization of universal composability.

2023

Machine-Checked Security for $$\textrm{XMSS} $$ as in RFC 8391 and $$\mathrm {SPHINCS^{+}} $$

Authors
Barbosa, M; Dupressoir, F; Grégoire, B; Hülsing, A; Meijers, M; Strub, P;

Publication
Lecture Notes in Computer Science - Advances in Cryptology – CRYPTO 2023

Abstract

2022

Deploying Decentralized, Privacy-Preserving Proximity Tracing

Authors
Troncoso, C; Payer, M; Hubaux, JP; Salathé, M; Larus, JR; Bugnion, E; Lueks, W; Stadler, T; Pyrgelis, A; Antonioli, D; Barman, L; Chatel, S; Paterson, KG; Capkun, S; Basin, DA; Beutel, J; Jackson, D; Roeschlin, M; Leu, P; Preneel, B; Smart, NP; Abidin, A; Gürses, SF; Veale, M; Cremers, C; Backes, M; Tippenhauer, NO; Binns, R; Cattuto, C; Barrat, A; Fiore, D; Barbosa, M; Oliveira, R; Pereira, J;

Publication
COMMUNICATIONS OF THE ACM

Abstract
[No abstract available]

  • 31
  • 255