Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by HASLab

2024

Validating multiple variants of an automotive light system with Alloy 6

Authors
Cunha, A; Macedo, N; Liu, C;

Publication
INTERNATIONAL JOURNAL ON SOFTWARE TOOLS FOR TECHNOLOGY TRANSFER

Abstract
This paper reports on the development and validation of a formal model for an automotive adaptive exterior lights system (ELS) with multiple variants in Alloy 6, which is the most recent version of the Alloy lightweight formal specification language that supports mutable relations and temporal logic. We explore different strategies to address variability, one in pure Alloy and another through an annotative language extension. We then show how Alloy and its Analyzer can be used to validate systems of this nature, namely by checking that the reference scenarios are admissible, and to automatically verify whether the established requirements hold. A prototype was developed to translate the provided validation sequences into Alloy and back to further automate the validation process. The resulting ELS model was validated against the provided validation sequences and verified for most of requirements for all variants.

2024

Alloy Goes Fuzzy

Authors
Silva, P; Cunha, A; Macedo, N; Oliveira, JN;

Publication
RIGOROUS STATE-BASED METHODS, ABZ 2024

Abstract
Humans are good at understanding subjective or vague statements which, however, are hard to express in classical logic. Fuzzy logic is an evolution of classical logic that can cope with vague terms by handling degrees of truth and not just the crisp values true and false. Logic is the formal basis of computing, enabling the formal design of systems supported by tools such as model checkers and theorem provers.This paper shows how a model checker such as Alloy can evolve to handle both classical and fuzzy logic, enabling the specification of high-level quantitative relational models in the fuzzy domain. In particular, the paper showcases how QAlloy-F (a conservative, general-purpose quantitative extension to standard Alloy) can be used to tackle fuzzy problems, namely in the context of validating the design of fuzzy controllers. The evaluation of QAlloy-F against examples taken from various classes of fuzzy case studies shows the approach to be feasible.

2024

Alloy Repair Hint Generation Based on Historical Data

Authors
Barros, A; Neto, H; Cunha, A; Macedo, N; Paiva, ACR;

Publication
Formal Methods - 26th International Symposium, FM 2024, Milan, Italy, September 9-13, 2024, Proceedings, Part II

Abstract
Platforms to support novices learning to program are often accompanied by automated next-step hints that guide them towards correct solutions. Many of those approaches are data-driven, building on historical data to generate higher quality hints. Formal specifications are increasingly relevant in software engineering activities, but very little support exists to help novices while learning. Alloy is a formal specification language often used in courses on formal software development methods, and a platform—Alloy4Fun—has been proposed to support autonomous learning. While non-data-driven specification repair techniques have been proposed for Alloy that could be leveraged to generate next-step hints, no data-driven hint generation approach has been proposed so far. This paper presents the first data-driven hint generation technique for Alloy and its implementation as an extension to Alloy4Fun, being based on the data collected by that platform. This historical data is processed into graphs that capture past students’ progress while solving specification challenges. Hint generation can be customized with policies that take into consideration diverse factors, such as the popularity of paths in those graphs successfully traversed by previous students. Our evaluation shows that the performance of this new technique is competitive with non-data-driven repair techniques. To assess the quality of the hints, and help select the most appropriate hint generation policy, we conducted a survey with experienced Alloy instructors. © The Author(s) 2025.

2024

Chronicles of CI/CD: A Deep Dive into its Usage Over Time

Authors
Gião, HD; Flores, A; Pereira, R; Cunha, J;

Publication
CoRR

Abstract

2024

SHORT: Evaluating Tools for Enhancing Reproducibility in Computational Scientific Experiments

Authors
Costa, L; Barbosa, S; Cunha, J;

Publication
PROCEEDINGS OF THE 2ND ACM CONFERENCE ON REPRODUCIBILITY AND REPLICABILITY, ACM REP 2024

Abstract
Ensuring the reproducibility of computational scientific experiments is crucial for advancing research and fostering scientific integrity. However, achieving reproducibility poses significant challenges, particularly in the absence of appropriate software tools to help. This paper addresses this issue by comparing existing tools designed to assist researchers across various fields in achieving reproducibility in their work. We were able to successfully run eight tools and execute them to reproduce three existing experiments from different domains. Our findings show the critical role of technical choices in shaping the capabilities of these tools for reproducibility efforts. By evaluating these tools for replicating experiments, we contribute insights into the current landscape of reproducibility support in scientific research. Our analysis offers guidance for researchers seeking appropriate tools to enhance the reproducibility of their experiments, highlighting the importance of informed technical decisions in facilitating reproducibility across diverse domains.

2024

A review on the decarbonization of high-performance computing centers

Authors
Silva, CA; Vilaça, R; Pereira, A; Bessa, RJ;

Publication
RENEWABLE & SUSTAINABLE ENERGY REVIEWS

Abstract
High-performance computing relies on performance-oriented infrastructures with access to powerful computing resources to complete tasks that contribute to solve complex problems in society. The intensive use of resources and the increase in service demand due to emerging fields of science, combined with the exascale paradigm, climate change concerns, and rising energy costs, ultimately means that the decarbonization of these centers is key to improve their environmental and financial performance. Therefore, a review on the main opportunities and challenges for the decarbonization of high-performance computing centers is essential to help decision-makers, operators and users contribute to a more sustainable computing ecosystem. It was found that state-of-the-art supercomputers are growing in computing power, but are combining different measures to meet sustainability concerns, namely going beyond energy efficiency measures and evolving simultaneously in terms of energy and information technology infrastructure. It was also shown that policy and multiple entities are now targeting specifically HPC, and that identifying synergies with the energy sector can reveal new revenue streams, but also enable a smoother integration of these centers in energy systems. Computing-intensive users can continue to pursue their scientific research, but participating more actively in the decarbonization process, in cooperation with computing service providers. Overall, many opportunities, but also challenges, were identified, to decrease carbon emissions in a sector mostly concerned with improving hardware performance.

  • 5
  • 251