Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by HASLab

2024

To FID or not to FID: Applying GANs for MRI Image Generation in HPC

Authors
Cepa, B; Brito, C; Sousa, A;

Publication

Abstract
AbstractWith the rapid growth of Deep Learning models and neural networks, the medical data available for training – which is already significantly less than other types of data – is becoming scarce. For that purpose, Generative Adversarial Networks (GANs) have received increased attention due to their ability to synthesize new realistic images. Our preliminary work shows promising results for brain MRI images; however, there is a need to distribute the workload, which can be supported by High-Performance Computing (HPC) environments. In this paper, we generate 256×256 MRI images of the brain in a distributed setting. We obtained an FIDRadImageNetof 10.67 for the DCGAN and 23.54 for the WGAN-GP, which are consistent with results reported in several works published in this scope. This allows us to conclude that distributing the GAN generation process is a viable option to overcome the computational constraints imposed by these models and, therefore, facilitate the generation of new data for training purposes.

2024

A worldwide overview on the information security posture of online public services

Authors
Silva, JM; Ribeiro, D; Ramos, LFM; Fonte, V;

Publication
57th Hawaii International Conference on System Sciences, HICSS 2024, Hilton Hawaiian Village Waikiki Beach Resort, Hawaii, USA, January 3-6, 2024

Abstract
The availability of public services through online platforms has improved the coverage and efficiency of essential services provided to citizens worldwide. These services also promote transparency and foster citizen participation in government processes. However, the increased online presence also exposes sensitive data exchanged between citizens and service providers to a wider range of security threats. Therefore, ensuring the security and trustworthiness of online services is crucial to Electronic Government (EGOV) initiatives' success. Hence, this work assesses the security posture of online platforms hosted in 3068 governmental domain names, across all UN Member States, in three dimensions: support for secure communication protocols; the trustworthiness of their digital certificate chains; and services' exposure to known vulnerabilities. The results indicate that despite its rapid development, the public sector still falls short in adopting international standards and best security practices in services and infrastructure management. This reality poses significant risks to citizens and services across all regions and income levels. © 2024 IEEE Computer Society. All rights reserved.

2024

Branching pomsets: Design, expressiveness and applications to choreographies

Authors
Edixhoven, L; Jongmans, SS; Proença, J; Castellani, I;

Publication
JOURNAL OF LOGICAL AND ALGEBRAIC METHODS IN PROGRAMMING

Abstract
Choreographic languages describe possible sequences of interactions among a set of agents. Typical models are based on languages or automata over sending and receiving actions. Pomsets provide a more compact alternative by using a partial order to explicitly represent causality and concurrency between these actions. However, pomsets offer no representation of choices, thus a set of pomsets is required to represent branching behaviour. For example, if an agent Alice can send one of two possible messages to Bob three times, one would need a set of 2 x 2 x 2 distinct pomsets to represent all possible branches of Alice's behaviour. This paper proposes an extension of pomsets, named branching pomsets, with a branching structure that can represent Alice's behaviour using 2 + 2 + 2 ordered actions. We compare the expressiveness of branching pomsets with that of several forms of event structures from the literature. We encode choreographies as branching pomsets and show that the pomset semantics of the encoded choreographies are bisimilar to their operational semantics. Furthermore, we define well-formedness conditions on branching pomsets, inspired by multiparty session types, and we prove that the well-formedness of a branching pomset is a sufficient condition for the realisability of the represented com-munication protocol. Finally, we present a prototype tool that implements our theory of branching pomsets, focusing on its applications to choreographies. (c) 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

2024

Overview on Constrained Multiparty Synchronisation in Team Automata

Authors
Proença, J;

Publication
FORMAL ASPECTS OF COMPONENT SOFTWARE, FACS 2023

Abstract
This paper provides an overview on recent work on Team Automata, whereby a network of automata interacts by synchronising actions from multiple senders and receivers. We further revisit this notion of synchronisation in other well known concurrency models, such as Reo, BIP, Choreography Automata, and Multiparty Session Types. We address realisability of Team Automata, i.e., how to infer a network of interacting automata from a global specification, taking into account that this realisation should satisfy exactly the same properties as the global specification. In this analysis we propose a set of interesting directions of challenges and future work in the context of Team Automata or similar concurrency models.

2024

Team Automata: Overview and Roadmap

Authors
ter Beek, MH; Hennicker, R; Proença, J;

Publication
COORDINATION MODELS AND LANGUAGES, COORDINATION 2024

Abstract
Team Automata is a formalism for interacting component-based systems proposed in 1997, whereby multiple sending and receiving actions from concurrent automata can synchronise. During the past 25+ years, team automata have been studied and applied in many different contexts, involving 25+ researchers and resulting in 25+ publications. In this paper, we first revisit the specific notion of synchronisation and composition of team automata, relating it to other relevant coordination models, such as Reo, BIP, Contract Automata, Choreography Automata, and Multi-Party Session Types. We then identify several aspects that have recently been investigated for team automata and related models. These include communication properties (which are the properties of interest?), realisability (how to decompose a global model into local components?) and tool support (what has been automatised or implemented?). Our presentation of these aspects provides a snapshot of the most recent trends in research on team automata, and delineates a roadmap for future research, both for team automata and for related formalisms.

2024

Databases in Edge and Fog Environments : A Survey

Authors
Meruje Ferreira, LM; Coelho, F; Pereira, J;

Publication
ACM Computing Surveys

Abstract
While a significant number of databases are deployed in cloud environments, pushing part or all data storage and querying planes closer to their sources (i.e., to the edge) can provide advantages in latency, connectivity, privacy, energy and scalability. This article dissects the advantages provided by databases in edge and fog environments, by surveying application domains and discussing the key drivers for pushing database systems to the edge. At the same time, it also identifies the main challenges faced by developers in this new environment, and analysis the mechanisms employed to deal with them. By providing an overview of the current state of edge and fog databases, this survey provides valuable insights into future research directions.

  • 6
  • 251