Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by SEM

2018

A labor requirements function for sizing the health workforce

Authors
Cruz Gomes, S; Amorim Lopes, M; Almada Lobo, B;

Publication
HUMAN RESOURCES FOR HEALTH

Abstract
Background: Ensuring healthcare delivery is dependent both on the prediction of the future demand for healthcare services and on the estimation and planning for the Health Human Resources needed to properly deliver these services. Although the Health Human Resources planning is a fascinating and widely researched topic, and despite the number of methodologies that have been used, no consensus on the best way of planning the future workforce requirements has been reported in the literature. This paper aims to contribute to the extension and diversity of the range of available methods to forecast the demand for Health Human Resources and assist in tackling the challenge of translating healthcare services to workforce requirements. Methods: A method to empirically quantify the relation between healthcare services and Health Human Resources requirements is proposed. For each one of the three groups of specialties identified-Surgical specialties, Medical specialties and Diagnostic specialties (e.g., pathologists)-a Labor Requirements Function relating the number of physicians with a set of specialty-specific workload and capital variables is developed. This approach, which assumes that health managers and decision-makers control the labor levels more easily than they control the amount of healthcare services demanded, is then applied to a panel dataset comprising information on 142 public hospitals, during a 12-year period. Results: This method provides interesting insights on healthcare services delivery: the number of physicians required to meet expected variations in the demand for healthcare, the effect of the technological progress on healthcare services delivery, the time spent on each type of care, the impact of Human Resources concentration on productivity, and the possible resource allocations given the opportunity cost of the physicians' labor. Conclusions: The empirical method proposed is simple and flexible and produces statistically strong models to estimate Health Human Resources requirements. Moreover, it can enable a more informed allocation of the available resources and help to achieve a more efficient delivery of healthcare services.

2018

Balancing mixed-model assembly systems in the footwear industry with a variable neighbourhood descent method

Authors
Sadeghi, P; Rebelo, RD; Ferreira, JS;

Publication
COMPUTERS & INDUSTRIAL ENGINEERING

Abstract
This paper addresses new Mixed-model Assembly Line Balancing Problems (MALBP) in a real industrial context, the stitching systems of a footwear company. The work is part of large ongoing projects with this industry, and the main purposes are minimising the number of required workstations and smoothing the operators' workload. The company has invested in new flexible automated assembly systems, which accommodate dozens of workstations and many moving boxes. Footwear components are inside boxes (with various quantities) which can move from the warehouses to a convenient workstation or between any workstations (in any order). This is a significant and distinct feature of the MALBP, together with the fact that the assignment of different skilled operators and machines is achieved simultaneously. An optimisation model is developed, in part to facilitate the understanding of the situation and to solve small-size instances. Due to the complexity of the problems, we had to devise an approximate method, based on the Variable Neighbourhood Descent (VND) metaheuristic and integrating an adaptation of the Ranked Positional Weighted (RPW) method. The adapted RPW method is used to create initial feasible solutions, while preassigning special operators and machines. After choosing good initial solutions, VND is applied to improve their quality. The new contributed method, named as RPW-VNDbal, is tested with medium and large instances, in two distinct stitching systems. A Lower Bound of the objective function and Simulation contribute to evaluate the solutions and their practicability. The results implemented by the project team, show that the RPW-VNDbal method is fast enough and offers better solutions than those implemented by the experienced operation managers of the company.

2018

Observability of power systems with optimal PMU placement

Authors
Carvalho, M; Klimentova, X; Viana, A;

Publication
COMPUTERS & OPERATIONS RESEARCH

Abstract
Phasor Measurement Units (PMUs) are measuring devices that, when placed in electrical networks, observe their state by providing information on the currents in their branches (transmission lines) and voltages in their buses. Compared to other devices, PMUs have the capability of observing other nodes besides the ones they are placed on. Due to a set of observability rules, depending on the placement decisions, the same number of PMUs can monitor a higher or smaller percentage of a network. This leads to the optimization problem hereby addressed, the PMU Placement Problem (PPP) which aims at determining the minimum number and location of PMUs that guarantee full observability of a network at minimum cost. In this paper we propose two general mathematical programming models for the PPP: a single-level and a bilevel integer programming model. To strengthen both formulations, we derive new valid inequalities and promote variable fixing. Furthermore, to tackle the bilevel model, we devise a cutting plane algorithm amended with particular features that improve its efficiency. The efficiency of the algorithm is validated through computational experiments. Results show that this new approach is more efficient than state-of-the-art proposals.

2018

Conceptual framework for the identification of influential contexts of the adoption decision

Authors
Simoes, AC; Barros, AC; Soares, AL;

Publication
2018 IEEE 16TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN)

Abstract
The decision to adopt new technologies is the most important stage in integrating a new technology into the ongoing processes of the organization and also to obtain benefits from its routine use. This paper proposes an integrated framework that combines Diffusion of Innovations (DOI) Theory, Technology-Organization-Environment (TOE) framework and Institutional Theory (INT) to characterize the critical factors influencing advanced technologies adoption in manufacturing context. This conceptual framework identifies three contextual environments - innovation, internal organizational and external environmental - that can influence the adoption decision along with some sub-contexts from the literature that may be considered. This framework can be used as starting point to explore in depth influential factors in advanced technologies in manufacturing contexts. Additionally, this framework can assist companies to develop adoption process plans as well as managerial practices that consider the role of these factors and thus lead to successful implementations.

2018

Designing new heuristics for the capacitated lot sizing problem by genetic programming

Authors
Hein, F; Almeder, C; Figueira, G; Almada Lobo, B;

Publication
COMPUTERS & OPERATIONS RESEARCH

Abstract
This work addresses the well-known capacitated lot sizing problem (CLSP) which is proven to be an NP-hard optimization problem. Simple period-by-period heuristics are popular solution approaches due to the extremely low computational effort and their suitability for rolling planning horizons. The aim of this work is to apply genetic programming (GP) to automatically generate specialized heuristics specific to the instance class. Experiments show that we are able to obtain better solutions when using GP evolved lot sizing rules compared to state-of-the-art constructive heuristics.

2018

A Dynamic Programming Approach for Integrating Dynamic Pricing and Capacity Decisions in a Rental Context

Authors
Oliveira, BB; Carravilla, MA; Oliveira, JF;

Publication
OPERATIONAL RESEARCH

Abstract
Car rental companies have the ability and potential to integrate their dynamic pricing decisions with their capacity decisions. Pricing has a significant impact on demand, while capacity, which translates fleet size, acquisition planning and fleet deployment throughout the network, can be used to meet this price-sensitive demand. Dynamic programming has been often used to tackle dynamic pricing problems and also to deal with similar integrated problems, yet with some significant differences as far as the inventory depletion and replenishment are considered. The goal of this work is to understand what makes the car rental problem different and hinders the application of more common methods. To do so, a discrete dynamic programming framework is proposed, with two different approaches to calculate the optimal-value function: one based on a Mixed Integer Non Linear Program (MINLP) and one based on a Constraint Programming (CP) model. These two approaches are analyzed and relevant insights are derived regarding the (in)ability of discrete dynamic programming to effectively tackle this problem within a rental context when realistically sized instances are considered.

  • 70
  • 134