2024
Authors
Dias, PA; Petry, MR; Rocha, LF;
Publication
2024 20TH IEEE/ASME INTERNATIONAL CONFERENCE ON MECHATRONIC AND EMBEDDED SYSTEMS AND APPLICATIONS, MESA 2024
Abstract
Emerging from a rich heritage, the shoe manufacturing industry stands as one of the world's most enduring and tradition-bound sectors. While renowned for their high-quality craftsmanship, countries like Portugal and Italy share the spotlight with those who focus on mass production methods. Regardless of their manufacturing model, both must adapt to the evolving competitive landscape by embracing innovative manufacturing techniques. Robotics has emerged as a transformative force within the shoe industry, offering a path towards enhanced working conditions for employees while simultaneously reducing reliance on manual labor and bolstering productivity. The main focus of this paper is the comprehensive literature review, which examines the advancements made by researchers in various stages of shoe production, including roughing, gluing, finishing, and lasting. This article sheds light on the industry's response to modernization and efficiency imperatives, providing a thorough understanding of robotics in shoe manufacturing automation. A case study on the real implementation and simulation of a robotic cell for sole roughing is also presented. The results revealed that the robotic cell maintains the production cadence.
2025
Authors
Nascimento, R; Rocha, CD; Gonzalez, DG; Silva, T; Moreira, R; Silva, MF; Filipe, V; Rocha, LF;
Publication
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
Abstract
The growing demand for high-quality components in various industries, particularly in the automotive sector, requires advanced and reliable inspection methods to maintain competitive standards and support innovation. Manual quality inspection tasks are often inefficient and prone to errors due to their repetitive nature and subjectivity, which can lead to attention lapses and operator fatigue. The inspection of reflective aluminum parts presents additional challenges, as uncontrolled reflections and glare can obscure defects and reduce the reliability of conventional vision-based methods. Addressing these challenges requires optimized illumination strategies and robust image processing techniques to enhance defect visibility. This work presents the development of an automated optical inspection system for reflective parts, focusing on components made of high-pressure diecast aluminum used in the automotive industry. The reflective nature of these parts introduces challenges for defect detection, requiring optimized illumination and imaging methods. The system applies deep learning algorithms and uses dome light to achieve uniform illumination, enabling the detection of small defects on reflective surfaces. A collaborative robotic manipulator equipped with a gripper handles the parts during inspection, ensuring precise positioning and repeatability, which improves both the efficiency and effectiveness of the inspection process. A flow execution-based software platform integrates all system components, enabling seamless operation. The system was evaluated with Schmidt Light Metal Group using three custom datasets to detect surface porosities and inner wall defects post-machining. For surface porosity detection, YOLOv8-Mosaic, trained with cropped images to reduce background noise, achieved a recall value of 84.71% and was selected for implementation. Additionally, an endoscopic camera was used in a preliminary study to detect defects within the inner walls of holes. The industrial trials produced promising results, demonstrating the feasibility of implementing a vision-based automated inspection system in various industries. The system improves inspection accuracy and efficiency while reducing material waste and operator fatigue.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.