Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Héber Miguel Sobreira

2019

Map-Matching Algorithms for Robot Self-Localization: A Comparison Between Perfect Match, Iterative Closest Point and Normal Distributions Transform

Authors
Sobreira, H; Costa, CM; Sousa, I; Rocha, L; Lima, J; Farias, PCMA; Costa, P; Paulo Moreira, AP;

Publication
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS

Abstract
The self-localization of mobile robots in the environment is one of the most fundamental problems in the robotics navigation field. It is a complex and challenging problem due to the high requirements of autonomous mobile vehicles, particularly with regard to the algorithms accuracy, robustness and computational efficiency. In this paper, we present a comparison of three of the most used map-matching algorithms applied in localization based on natural landmarks: our implementation of the Perfect Match (PM) and the Point Cloud Library (PCL) implementation of the Iterative Closest Point (ICP) and the Normal Distribution Transform (NDT). For the purpose of this comparison we have considered a set of representative metrics, such as pose estimation accuracy, computational efficiency, convergence speed, maximum admissible initialization error and robustness to the presence of outliers in the robots sensors data. The test results were retrieved using our ROS natural landmark public dataset, containing several tests with simulated and real sensor data. The performance and robustness of the Perfect Match is highlighted throughout this article and is of paramount importance for real-time embedded systems with limited computing power that require accurate pose estimation and fast reaction times for high speed navigation. Moreover, we added to PCL a new algorithm for performing correspondence estimation using lookup tables that was inspired by the PM approach to solve this problem. This new method for computing the closest map point to a given sensor reading proved to be 40 to 60 times faster than the existing k-d tree approach in PCL and allowed the Iterative Closest Point algorithm to perform point cloud registration 5 to 9 times faster.

2019

New Approach to Supervise Localization Algorithms

Authors
Coelho, FD; Guedes, PM; Guimaraes, DA; Sobreira, HM; Moreira, AP;

Publication
2019 19TH IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC 2019)

Abstract
The localization algorithms have different errors which can impair the robot's navigation. In this way, we propose an approach that will supervise the localization while the robot navigate. Our approach is based on another work present in the literature, where we detected a problem during its analysis. Therefore, this article will present a new method based on the RLS algorithm, to solve the identified problem. Besides, we propose the supervision of two more localization algorithms, being now four the supervised algorithms, namely: Augmented Monte Carlo Localization, Extended Kalman Filter with Beacons, Perfect Match and Odometry. The results show that the robustness and reliability of the system were increased.

2020

Autonomous Robot Navigation for Automotive Assembly Task: An Industry Use-Case

Authors
Sobreira, H; Rocha, L; Lima, J; Rodrigues, F; Moreira, AP; Veiga, G;

Publication
FOURTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, ROBOT 2019, VOL 1

Abstract
Automobile industry faces one of the most flexible productivity caused by the number of customized models variants due to the buyers needs. This fact requires the production system to introduce flexible, adaptable and cooperative with humans solutions. In the present work, a panel that should be mounted inside a van is addressed. For that purpose, a mobile manipulator is suggested that could share the same space with workers helping each other. This paper presents the navigation system for the robot that enters the van from the rear door after a ramp, operates and exits. The localization system is based on 3DOF methodologies that allow the robot to operate autonomously. Real tests scenarios prove the precision and repeatability of the navigation system outside, inside and during the ramp access of the van.

2020

Development of an Autonomous Mobile Towing Vehicle for Logistic Tasks

Authors
Rocha, C; Sousa, I; Ferreira, F; Sobreira, H; Lima, J; Veiga, G; Moreira, AP;

Publication
FOURTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, ROBOT 2019, VOL 1

Abstract
Frequently carrying high loads and performing repetitive tasks compromises the ergonomics of individuals, a recurrent scenario in hospital environments. In this paper, we design a logistic planner of a fleet of autonomous mobile robots for the automation of transporting trolleys around the hospital, which is independent of the space configuration, and robust to loss of network and deadlocks. Our robotic solution has an innovative gripping system capable of grasping and pulling non-modified standard trolleys just by coupling a plate. Robots are able to navigate autonomously, to avoid obstacles assuring the safety of operators, to identify and dock a trolley, to access charging stations and elevators, and to communicate with the latter. An interface was built allowing users to command the robots through a web server. It is shown how the proposed methodology behaves in experiments conducted at the Faculty of Engineering of the University of Porto and Braga's Hospital.

2020

Localization and Mapping for Robots in Agriculture and Forestry: A Survey

Authors
Aguiar, AS; dos Santos, FN; Cunha, JB; Sobreira, H; Sousa, AJ;

Publication
ROBOTICS

Abstract
Research and development of autonomous mobile robotic solutions that can perform several active agricultural tasks (pruning, harvesting, mowing) have been growing. Robots are now used for a variety of tasks such as planting, harvesting, environmental monitoring, supply of water and nutrients, and others. To do so, robots need to be able to perform online localization and, if desired, mapping. The most used approach for localization in agricultural applications is based in standalone Global Navigation Satellite System-based systems. However, in many agricultural and forest environments, satellite signals are unavailable or inaccurate, which leads to the need of advanced solutions independent from these signals. Approaches like simultaneous localization and mapping and visual odometry are the most promising solutions to increase localization reliability and availability. This work leads to the main conclusion that, few methods can achieve simultaneously the desired goals of scalability, availability, and accuracy, due to the challenges imposed by these harsh environments. In the near future, novel contributions to this field are expected that will help one to achieve the desired goals, with the development of more advanced techniques, based on 3D localization, and semantic and topological mapping. In this context, this work proposes an analysis of the current state-of-the-art of localization and mapping approaches in agriculture and forest environments. Additionally, an overview about the available datasets to develop and test these approaches is performed. Finally, a critical analysis of this research field is done, with the characterization of the literature using a variety of metrics.

2021

Particle filter refinement based on clustering procedures for high-dimensional localization and mapping systems

Authors
Aguiar, AS; dos Santos, FN; Sobreira, H; Cunha, JB; Sousa, AJ;

Publication
ROBOTICS AND AUTONOMOUS SYSTEMS

Abstract
Developing safe autonomous robotic applications for outdoor agricultural environments is a research field that still presents many challenges. Simultaneous Localization and Mapping can be crucial to endow the robot to localize itself with accuracy and, consequently, perform tasks such as crop monitoring and harvesting autonomously. In these environments, the robotic localization and mapping systems usually benefit from the high density of visual features. When using filter-based solutions to localize the robot, such an environment usually uses a high number of particles to perform accurately. These two facts can lead to computationally expensive localization algorithms that are intended to perform in real-time. This work proposes a refinement step to a standard high-dimensional filter based localization solution through the novelty of downsampling the filter using an online clustering algorithm and applying a scan-match procedure to each cluster. Thus, this approach allows scan matchers without high computational cost, even in high dimensional filters. Experiments using real data in an agricultural environment show that this approach improves the Particle Filter performance estimating the robot pose. Additionally, results show that this approach can build a precise 3D reconstruction of agricultural environments using visual scans, i.e., 3D scans with RGB information.

  • 4
  • 5