2015
Authors
Lopes, F; Silva, H; Almeida, JM; Martins, A; Silva, E;
Publication
OCEANS 2015 - GENOVA
Abstract
In this work we propose the development of a stereo SLS system for underwater inspection operations. We demonstrate how to perform a SLS calibration both in dry and underwater environments using two different methods. The proposed methodology is able to achieve quite accurate results, lower than 1 mm in dry environments. We also display a 3D underwater scan of a known object size, a sea scallop, where the system is able to perform a scan with a global error lower than 2% of the object size.
2014
Authors
Ferreira, H; Martins, A; Almeida, JM; Valente, A; Figueiredo, A; da Cruz, B; Camilo, M; Lobo, V; Pinho, C; Olivier, A; Silva, E;
Publication
2014 OCEANS - ST. JOHN'S
Abstract
This paper describes the TURTLE project that aim to develop sub-systems with the capability of deep-sea long-term presence. Our motivation is to produce new robotic ascend and descend energy efficient technologies to be incorporated in robotic vehicles used by civil and military stakeholders for underwater operations. TURTLE contribute to the sustainable presence and operations in the sea bottom. Long term presence on sea bottom, increased awareness and operation capabilities in underwater sea and in particular on benthic deeps can only be achieved through the use of advanced technologies, leading to automation of operation, reducing operational costs and increasing efficiency of human activity.
2016
Authors
Silva, H; Almeida, JM; Lopes, F; Ribeiro, JP; Freitas, S; Amaral, G; Almeida, C; Martins, A; Silva, E;
Publication
OCEANS 2016 MTS/IEEE MONTEREY
Abstract
This paper addresses the use of heterogeneous sensors for target detection and recognition in maritime environment. An Unmanned Aerial Vehicle payload was assembled using hyperspectral, infrared, electro-optical, AIS and INS information to collect synchronized sensor data with vessel ground-truth position for conducting air and sea trials. The data collected is used to develop automated robust methods for detect and recognize vessels based on their exogenous physical characteristics and their behaviour across time. Data Processing preliminary results are also presented.
2015
Authors
Dias, A; Almeida, J; Lima, P; Silva, E;
Publication
ROBOCUP 2014: ROBOT WORLD CUP XVIII
Abstract
The paper presents a multi-robot cooperative framework to estimate the 3D position of dynamic targets, based on bearing-only vision measurements. The uncertainty of the observation provided by each robot equipped with a bearing-only vision system is effectively addressed for cooperative triangulation purposes by weighing the contribution of each monocular bearing ray in a probabilistic manner. The envisioned framework is evaluated in an outdoor scenario with a team of heterogeneous robots composed of an Unmanned Ground and Aerial Vehicle.
2014
Authors
Machado, D; Martins, A; Almeida, JM; Ferreira, H; Amaral, G; Ferreira, B; Matos, A; Silva, E;
Publication
2014 OCEANS - ST. JOHN'S
Abstract
This paper presents the design of low cost, small autonomous surface vehicle for missions in the coastal waters and specifically for the challenging surf zone. The main objective of the vehicle design described in this paper is to address both the capability of operation at sea in relative challenging conditions and maintain a very low set of operational requirements (ease of deployment). This vehicle provides a first step towards being able to perform general purpose missions (such as data gathering or patrolling) and to at least in a relatively short distances to be able to be used in rescue operations (with very low handling requirements) such as carrying support to humans on the water. The USV is based on a commercially available fiber glass hull, it uses a directional waterjet powered by an electrical brushless motor for propulsion, thus without any protruding propeller reducing danger in rescue operations. Its small dimensions (1.5 m length) and weight allow versatility and ease of deployment. The vehicle design is described in this paper both from a hardware and software point of view. A characterization of the vehicle in terms of energy consumption and performance is provided both from test tank and operational scenario tests. An example application in search and rescue is also presented and discussed with the integration of this vehicle in the European ICARUS (7th framework) research project addressing the development and integration of robotic tools for large scale search and rescue operations.
2013
Authors
Silva, H; Bernardino, A; Silva, E;
Publication
VISAPP 2013 - Proceedings of the International Conference on Computer Vision Theory and Applications
Abstract
We present a novel approach to 6D visual odometry for vehicles with calibrated stereo cameras. A dense probabilistic egomotion (5D) method is combined with robust stereo feature based approaches and Extended Kalman Filtering (EKF) techniques to provide high quality estimates of vehicle's angular and linear velocities. Experimental results show that the proposed method compares favorably with state-the-art approaches, mainly in the estimation of the angular velocities, where significant improvements are achieved.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.