2020
Authors
Campos, R; Jorge, A; Jatowt, A; Bhatia, S;
Publication
Advances in Information Retrieval - 42nd European Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14-17, 2020, Proceedings, Part II
Abstract
The Third International Workshop on Narrative Extraction from Texts (Text2Story’20) [text2story20.inesctec.pt] held in conjunction with the 42nd European Conference on Information Retrieval (ECIR 2020) gives researchers of IR, NLP and other fields, the opportunity to share their recent advances in extraction and formal representation of narratives. This workshop also presents a forum to consolidate the multi-disciplinary efforts and foster discussions around the narrative extraction task, a hot topic in recent years. © Springer Nature Switzerland AG 2020.
2020
Authors
Campos, R; Jorge, AM; Jatowt, A; Bhatia, S;
Publication
Text2Story@ECIR
Abstract
2020
Authors
Muhammad, SH; Brazdil, P; Jorge, A;
Publication
Advances in Information Retrieval - 42nd European Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14-17, 2020, Proceedings, Part II
Abstract
Sentiment lexicon plays a vital role in lexicon-based sentiment analysis. The lexicon-based method is often preferred because it leads to more explainable answers in comparison with many machine learning-based methods. But, semantic orientation of a word depends on its domain. Hence, a general-purpose sentiment lexicon may gives sub-optimal performance compare with a domain-specific lexicon. However, it is challenging to manually generate a domain-specific sentiment lexicon for each domain. Still, it is impractical to generate complete sentiment lexicon for a domain from a single corpus. To this end, we propose an approach to automatically generate a domain-specific sentiment lexicon using a vector model enriched by weights. Importantly, we propose an incremental approach for updating an existing lexicon to either the same domain or different domain (domain-adaptation). Finally, we discuss how to incorporate sentiment lexicons information in neural models (word embedding) for better performance. © Springer Nature Switzerland AG 2020.
2020
Authors
Loureiro, D; Jorge, AM;
Publication
Advances in Information Retrieval - 42nd European Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14-17, 2020, Proceedings, Part II
Abstract
Progress in the field of Natural Language Processing (NLP) has been closely followed by applications in the medical domain. Recent advancements in Neural Language Models (NLMs) have transformed the field and are currently motivating numerous works exploring their application in different domains. In this paper, we explore how NLMs can be used for Medical Entity Linking with the recently introduced MedMentions dataset, which presents two major challenges: (1) a large target ontology of over 2M concepts, and (2) low overlap between concepts in train, validation and test sets. We introduce a solution, MedLinker, that addresses these issues by leveraging specialized NLMs with Approximate Dictionary Matching, and show that it performs competitively on semantic type linking, while improving the state-of-the-art on the more fine-grained task of concept linking (+4 F1 on MedMentions main task). © Springer Nature Switzerland AG 2020.
2020
Authors
Nobrega, FAA; Jorge, AM; Brazdil, P; Pardo, TAS;
Publication
COMPUTATIONAL PROCESSING OF THE PORTUGUESE LANGUAGE, PROPOR 2020
Abstract
The task of Sentence Compression aims at producing a shorter version of a given sentence. This task may assist many other applications, as Automatic Summarization and Text Simplification. In this paper, we investigate methods for Sentence Compression for Portuguese. We focus on machine learning-based algorithms and propose new strategies. We also create reference corpora/datasets for the area, allowing to train and to test the methods of interest. Our results show that some of our methods outperform previous initiatives for Portuguese and produce competitive results with a state of the art method in the area.
2020
Authors
Vinagre, J; Jorge, AM; Ghossein, MA; Bifet, A;
Publication
RecSys 2020: Fourteenth ACM Conference on Recommender Systems, Virtual Event, Brazil, September 22-26, 2020
Abstract
Modern online web-based systems continuously generate data at very fast rates. This continuous flow of data encompasses web content - e.g. posts, news, products, comments -, but also user feedback - e.g. ratings, views, reads, clicks, thumbs up -, as well as context information - device used, geographic info, social network, current user activity, weather. This is potentially overwhelming for systems and algorithms design to train in offline batches, given the continuous and potentially fast change of content, context and user preferences. Therefore it is important to investigate online methods to be able to transparently adapt to the inherent dynamics of online systems. Incremental models that learn from data streams are gaining attention in the recommender systems community, given their natural ability to deal with data generated in dynamic, complex environments. User modeling and personalization can particularly benefit from algorithms capable of maintaining models incrementally and online, as data is generated. The objective of this workshop is to foster contributions and bring together a growing community of researchers and practitioners interested in online, adaptive approaches to user modeling, recommendation and personalization, as well as other related tasks, such as evaluation, reproducibility, privacy and explainability. © 2020 Owner/Author.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.