Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by LIAAD

2021

Cross-Domain Co-Author Recommendation Based on Knowledge Graph Clustering

Authors
Munna, TA; Delhibabu, R;

Publication
INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2021

Abstract
Nowadays, due to the growing demand for interdisciplinary research and innovation, different scientific communities pay substantial attention to cross-domain collaboration. However, having only information retrieval technologies in hands might be not enough to find prospective collaborators due to the large volume of stored bibliographic records in scholarly databases and unawareness about emerging cross-disciplinary trends. To address this issue, the endorsement of the cross-disciplinary scientific alliances have been introduced as a new tool for scientific research and technological modernization. In this paper, we use a state-of-art knowledge representation technique named Knowledge Graphs (KGs) and demonstrate how clustering of learned KGs embeddings helps to build a cross-disciplinary co-author recommendation system. © 2021, Springer Nature Switzerland AG.

2021

Interpretability of Machine Intelligence in Medical Image Computing, and Topological Data Analysis and Its Applications for Medical Data - 4th International Workshop, iMIMIC 2021, and 1st International Workshop, TDA4MedicalData 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings

Authors
Reyes, M; Abreu, PH; Cardoso, JS; Hajij, M; Zamzmi, G; Paul, R; Thakur, L;

Publication
iMIMIC/TDA4MedicalData@MICCAI

Abstract

2021

FAWOS: Fairness-Aware Oversampling Algorithm Based on Distributions of Sensitive Attributes

Authors
Salazar, T; Santos, MS; Araujo, H; Abreu, PH;

Publication
IEEE ACCESS

Abstract
With the increased use of machine learning algorithms to make decisions which impact people's lives, it is of extreme importance to ensure that predictions do not prejudice subgroups of the population with respect to sensitive attributes such as race or gender. Discrimination occurs when the probability of a positive outcome changes across privileged and unprivileged groups defined by the sensitive attributes. It has been shown that this bias can be originated from imbalanced data contexts where one of the classes contains a much smaller number of instances than the other classes. It is also important to identify the nature of the imbalanced data, including the characteristics of the minority classes' distribution. This paper presents FAWOS: a Fairness-Aware oversampling algorithm which aims to attenuate unfair treatment by handling sensitive attributes' imbalance. We categorize different types of datapoints according to their local neighbourhood with respect to the sensitive attributes, identifying which are more difficult to learn by the classifiers. In order to balance the dataset, FAWOS oversamples the training data by creating new synthetic datapoints using the different types of datapoints identified. We test the impact of FAWOS on different learning classifiers and analyze which can better handle sensitive attribute imbalance. Empirically, we observe that this algorithm can effectively increase the fairness results of the classifiers while not neglecting the classification performance. Source code can be found at: https://github.com/teresalazar13/FAWOS

2021

Using Brain Computer Interaction to Evaluate Problem Solving Abilities

Authors
Teixeira, AR; Rodrigues, I; Gomes, A; Abreu, P; Rodríguez Bermúdez, G;

Publication
AUGMENTED COGNITION, AC 2021

Abstract

2021

FAWOS: Fairness-Aware Oversampling Algorithm Based on Distributions of Sensitive Attributes

Authors
Salazar, T; Santos, MS; Araújo, H; Abreu, PH;

Publication
IEEE Access

Abstract

2021

Travel motivations and constraints of Portuguese retirees

Authors
Filipe, S; Barbosa, B; Santos, CA;

Publication
ANATOLIA-INTERNATIONAL JOURNAL OF TOURISM AND HOSPITALITY RESEARCH

Abstract
Retirees have been growing in importance as a consumer segment targeted by the tourism industry, namely because they can minimize the typical seasonality of tourism and increase its sustainability. This study aims to contribute to a more in-depth knowledge of retirees' behaviour and has two objectives: (i) describe tourist behaviour of seniors prior to and after retirement; (ii) identify and analyse retired consumers' current motivations and constraints towards tourism. Qualitative research was conducted comprising interviews with 40 Portuguese retirees. The results indicate a diversity of experiences regarding tourism activities both before and after retirement, evidencing that past experience stands out as a determinant of retirees' tourism behaviour. Moreover, three distinct segments of tourists emerge: the experts, the new tourists, and the non-tourists.

  • 157
  • 516