2020
Authors
Coutinho, JC; Moreira, JM; de Sa, CR;
Publication
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT III
Abstract
Labelled football (soccer) data is hard to acquire and it usually needs humans to annotate the match events. This process makes it more expensive to be obtained by smaller clubs. UnFOOT (Unsupervised Football Analytics Tool) combines data mining techniques and basic statistics to measure the performance of players and teams from positional data. The capabilities of the tool involve preprocessing the match data, extraction of features, visualization of player and team performance. It also has built-in data mining techniques, such as association rule mining, subgroup discovery and a proposed approach to look for frequent distributions.
2020
Authors
Neves, TM; Moreira, JM;
Publication
Foundations of Intelligent Systems - 25th International Symposium, ISMIS 2020, Graz, Austria, September 23-25, 2020, Proceedings
Abstract
For many reasons, including sports being one of the main forms of entertainment in the world, online gambling is growing. And in growing markets, opportunities to explore it arise. In this paper, neural network ensemble approaches, such as bagging, random subspace sampling, negative correlation learning and the simple averaging of predictions, are compared. For each one of these methods, several combinations of input parameters are evaluated. We used only the expected goals metric as predictors since it is able to have good predictive power while keeping the computational demands low. These models are compared in the soccer (also known as association football) betting context where we have access to metrics, such as rentability, to analyze the results in multiple perspectives. The results show that the optimal solution is goal-dependent, with the ensemble methods being able to increase the accuracy up to +3 % over the best single model. The biggest improvement over the single model was obtained by averaging dropout networks. © 2020, Springer Nature Switzerland AG.
2020
Authors
Ferreira, PJS; Cardoso, JMP; Moreira, JM;
Publication
Comput.
Abstract
The kNN machine learning method is widely used as a classifier in Human Activity Recognition (HAR) systems. Although the kNN algorithm works similarly both online and in offline mode, the use of all training instances is much more critical online than offline due to time and memory restrictions in the online mode. Some methods propose decreasing the high computational costs of kNN by focusing, e.g., on approximate kNN solutions such as the ones relying on Locality-Sensitive Hashing (LSH). However, embedded kNN implementations also need to address the target device’s memory constraints, especially as the use of online classification needs to cope with those constraints to be practical. This paper discusses online approaches to reduce the number of training instances stored in the kNN search space. To address practical implementations of HAR systems using kNN, this paper presents simple, energy/computationally efficient, and real-time feasible schemes to maintain at runtime a maximum number of training instances stored by kNN. The proposed schemes include policies for substituting the training instances, maintaining the search space to a maximum size. Experiments in the context of HAR datasets show the efficiency of our best schemes. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.
2020
Authors
Seca, D; Moreira, JM; Neves, TM; Sousa, R;
Publication
CoRR
Abstract
2020
Authors
Hosseinian, S; Fontes, DBMM; Butenko, S;
Publication
INFORMS JOURNAL ON COMPUTING
Abstract
This paper explores the connections between the classical maximum clique problem and its edge-weighted generalization, the maximum edge weight clique (MEWC) problem. As a result, a new analytic upper bound on the clique number of a graph is obtained and an exact algorithm for solving the MEWC problem is developed. The bound on the clique number is derived using a Lagrangian relaxation of an integer (linear) programming formulation of the MEWC problem. Furthermore, coloring-based bounds on the clique number are used in a novel upper-bounding scheme for the MEWC problem. This scheme is employed within a combinatorial branch-and-bound framework, yielding an exact algorithm for the MEWC problem. Results of computational experiments demonstrate a superior performance of the proposed algorithm compared with existing approaches.
2020
Authors
Roque, LAC; Paiva, LT; Fernandes, MCRM; Fontes, DBMM; Fontes, FACC;
Publication
ENERGY REPORTS
Abstract
We consider a farm of Kite Power Systems (KPS) in the field of Airborne Wind Energy (AWE), in which each kite is connected to an electric ground generator by a tether. In particular, we address the problem of selecting the best layout of such farm in a given land area such that the total electrical power generated is maximized. The kites, typically, fly at high altitudes, sweep a greater area than that of traditional wind turbines, and move within a conic shaped volume with vertex on the ground station. Therefore, constraints concerning kite collision avoidance and terrain boundaries must be considered. The efficient use of a given land area by a set of KPS depends on the location of each unit, on its tether length and on the elevation angle. In this work, we formulate the KPS farm layout optimization problem. Considering a specific KPS and wind characteristics of the given location, we study the power curve as a function of the tether length and elevation angle. Combining these results with an area with specified length and width, we develop and implement a heuristic optimization procedure to devise the layout of a KPS farm that maximizes wind power generation. (C) 2019 Published by Elsevier Ltd.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.