Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by LIAAD

2019

Guest Editorial: Special Issue on Data Mining for Geosciences

Authors
Jorge, A; Lopes, RL; Larrazabal, G; Nikhalat Jahromi, H;

Publication
DATA MINING AND KNOWLEDGE DISCOVERY

Abstract

2019

Classifying Heart Sounds Using Images of Motifs, MFCC and Temporal Features

Authors
Nogueira, DM; Ferreira, CA; Gomes, EF; Jorge, AM;

Publication
JOURNAL OF MEDICAL SYSTEMS

Abstract
Cardiovascular disease is the leading cause of death in the world, and its early detection is a key to improving long-term health outcomes. The auscultation of the heart is still an important method in the medical process because it is very simple and cheap. To detect possible heart anomalies at an early stage, an automatic method enabling cardiac health low-cost screening for the general population would be highly valuable. By analyzing the phonocardiogram signals, it is possible to perform cardiac diagnosis and find possible anomalies at an early-term. Therefore, the development of intelligent and automated analysis tools of the phonocardiogram is very relevant. In this work, we use simultaneously collected electrocardiograms and phonocardiograms from the Physionet Challenge database with the main objective of determining whether a phonocardiogram corresponds to a normal or abnormal physiological state. Our main contribution is the methodological combination of time domain features and frequency domain features of phonocardiogram signals to improve cardiac disease automatic classification. This novel approach is developed using both features. First, the phonocardiogram signals are segmented with an algorithm based on a logistic regression hidden semi-Markov model, which uses electrocardiogram signals as a reference. Then, two groups of features from the time and frequency domain are extracted from the phonocardiogram segments. One group is based on motifs and the other on Mel-frequency cepstral coefficients. After that, we combine these features into a two-dimensional time-frequency heat map representation. Lastly, a binary classifier is applied to both groups of features to learn a model that discriminates between normal and abnormal phonocardiogram signals. In the experiments, three classification algorithms are used: Support Vector Machines, Convolutional Neural Network, and Random Forest. The best results are achieved when both time and Mel-frequency cepstral coefficients features are considered using a Support Vector Machines with a radial kernel.

2019

Guest Editorial

Authors
Jorge, A; Lopes, RL; Larrazabal, G; Nikhalat-Jahromi, H;

Publication
Data Mining and Knowledge Discovery

Abstract

2019

Interactive System for Automatically Generating Temporal Narratives

Authors
Pasquali, A; Mangaravite, V; Campos, R; Jorge, AM; Jatowt, A;

Publication
Advances in Information Retrieval - 41st European Conference on IR Research, ECIR 2019, Cologne, Germany, April 14-18, 2019, Proceedings, Part II

Abstract
In this demo, we present a tool that allows to automatically generate temporal summarization of news collections. Conta-me Histórias (Tell me stories) is a friendly user interface that enables users to explore and revisit events in the past. To select relevant stories and temporal periods, we rely on a key-phrase extraction algorithm developed by our research team, and event detection methods made available by the research community. Additionally, we offer the engine as an open source package that can be extended to support different datasets or languages. The work described here stems from our participation at the Arquivo.pt 2018 competition, where we have been awarded the first prize. © Springer Nature Switzerland AG 2019.

2019

Estimating time and score uncertainty in generating successful learning paths under time constraints

Authors
Nabizadeh, AH; Jorge, AM; Leal, JP;

Publication
EXPERT SYSTEMS

Abstract
This paper addresses the problem of course (path) generation when a learner's available time is not enough to follow the complete course. We propose a method to recommend successful paths regarding a learner's available time and his/her knowledge background. Our recommender is an instance of long term goal recommender systems (LTRS). This method, after locating a target learner in a course graph, applies a depth-first search algorithm to find all paths for the learner given a time limitation. In addition, our method estimates learning time and score for all paths. It also indicates the probability of error for the estimated time and score for each path. Finally, our method recommends a path that satisfies the learner's time restriction while maximizing expected learning score. In order to evaluate our proposals for time and score estimation, we used the mean absolute error and average MAE. We have evaluated time and score estimation methods, including one proposed in the literature, on two E-learning datasets.

2019

Information Processing & Management Journal Special Issue on Narrative Extraction from Texts (Text2Story) Preface

Authors
Jorge, AM; Campos, R; Jatowt, A; Nunes, S;

Publication
INFORMATION PROCESSING & MANAGEMENT

Abstract

  • 172
  • 496