2024
Authors
Colonna, JG; Fares, AA; Duarte, M; Sousa, R;
Publication
INTELLIGENT SYSTEMS WITH APPLICATIONS
Abstract
Process Mining offers a powerful framework for uncovering, analyzing, and optimizing real-world business processes. Petri nets provide a versatile means of modeling process behavior. However, traditional methods often struggle to effectively compare complex Petri nets, hindering their potential for process enhancement. To address this challenge, we introduce PetriNet2Vec, an unsupervised methodology inspired by Doc2Vec. This approach converts Petri nets into embedding vectors, facilitating the comparison, clustering, and classification of process models. We validated our approach using the PDC Dataset, comprising 96 diverse Petri net models. The results demonstrate that PetriNet2Vec effectively captures the structural properties of process models, enabling accurate process classification and efficient process retrieval. Specifically, our findings highlight the utility of the learned embeddings in two key downstream tasks: process classification and process retrieval. In process classification, the embeddings allowed for accurate categorization of process models based on their structural properties. In process retrieval, the embeddings enabled efficient retrieval of similar process models using cosine distance. These results demonstrate the potential of PetriNet2Vec to significantly enhance process mining capabilities.
2024
Authors
Abouelmaty, AM; Colaço, A; Fares, AA; Ramos, A; Costa, PA;
Publication
COMPUTERS AND GEOTECHNICS
Abstract
This study focuses on the assessment of ground vibrations due to pile driving activities. Given the likelihood of excessive vibration due to the driving process, it is imperative to predict vibration levels during the design phase. The primary goal of this work is to integrate machine learning techniques, specifically Extreme Gradient Boosting (XGBoost) and Artificial Neural Networks (ANNs) for real-time vibration prediction. The training dataset was generated using a validated numerical model and the trained models were validated based on experimental results. This validation process highlights the efficiency and accuracy of Extreme Gradient Boosting in predicting the-free-field response of the ground.
2024
Authors
Brito, C; Ferreira, P; Paulo, J;
Publication
Abstract
2024
Authors
Ribeiro, R; Moraes, A; Moreno, M; Ferreira, PG;
Publication
MACHINE LEARNING
Abstract
Aging involves complex biological processes leading to the decline of living organisms. As population lifespan increases worldwide, the importance of identifying factors underlying healthy aging has become critical. Integration of multi-modal datasets is a powerful approach for the analysis of complex biological systems, with the potential to uncover novel aging biomarkers. In this study, we leveraged publicly available epigenomic, transcriptomic and telomere length data along with histological images from the Genotype-Tissue Expression project to build tissue-specific regression models for age prediction. Using data from two tissues, lung and ovary, we aimed to compare model performance across data modalities, as well as to assess the improvement resulting from integrating multiple data types. Our results demostrate that methylation outperformed the other data modalities, with a mean absolute error of 3.36 and 4.36 in the test sets for lung and ovary, respectively. These models achieved lower error rates when compared with established state-of-the-art tissue-agnostic methylation models, emphasizing the importance of a tissue-specific approach. Additionally, this work has shown how the application of Hierarchical Image Pyramid Transformers for feature extraction significantly enhances age modeling using histological images. Finally, we evaluated the benefits of integrating multiple data modalities into a single model. Combining methylation data with other data modalities only marginally improved performance likely due to the limited number of available samples. Combining gene expression with histological features yielded more accurate age predictions compared with the individual performance of these data types. Given these results, this study shows how machine learning applications can be extended to/in multi-modal aging research. Code used is available at https://github.com/zroger49/multi_modal_age_prediction.
2024
Authors
Ramirez, JM; Ribeiro, R; Soldatkina, O; Moraes, A; García-Pérez, R; Ferreira, PG; Melé, M;
Publication
Abstract
2024
Authors
Machado, J; Amorim, E;
Publication
Anais do XXXIX Simpósio Brasileiro de Banco de Dados (SBBD 2024)
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.