Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by LIAAD

2024

Multilayer quantile graph for multivariate time series analysis and dimensionality reduction

Authors
Silva, VF; Silva, ME; Ribeiro, P; Silva, F;

Publication
INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS

Abstract
In recent years, there has been a surge in the prevalence of high- and multidimensional temporal data across various scientific disciplines. These datasets are characterized by their vast size and challenging potential for analysis. Such data typically exhibit serial and cross-dependency and possess high dimensionality, thereby introducing additional complexities to conventional time series analysis methods. To address these challenges, a recent and complementary approach has emerged, known as network-based analysis methods for multivariate time series. In univariate settings, quantile graphs have been employed to capture temporal transition properties and reduce data dimensionality by mapping observations to a smaller set of sample quantiles. To confront the increasingly prominent issue of high dimensionality, we propose an extension of quantile graphs into a multivariate variant, which we term Multilayer Quantile Graphs. In this innovative mapping, each time series is transformed into a quantile graph, and inter-layer connections are established to link contemporaneous quantiles of pairwise series. This enables the analysis of dynamic transitions across multiple dimensions. In this study, we demonstrate the effectiveness of this new mapping using synthetic and benchmark multivariate time series datasets. We delve into the resulting network's topological structures, extract network features, and employ these features for original dataset analysis. Furthermore, we compare our results with a recent method from the literature. The resulting multilayer network offers a significant reduction in the dimensionality of the original data while capturing serial and cross-dimensional transitions. This approach facilitates the characterization and analysis of large multivariate time series datasets through network analysis techniques.

2024

Predicting macroeconomic indicators from online activity data: A review

Authors
Costa, EA; Silva, ME;

Publication
Statistical Journal of the IAOS

Abstract
Predictors of macroeconomic indicators rely primarily on traditional data sourced from National Statistical Offices. However, new data sources made available from recent technological advancements, namely data from online activities, have the potential to bring about fresh perspectives on monitoring economic activities and enhance the accuracy of forecasting. This paper reviews the literature on predicting macroeconomic indicators, such as the gross domestic product, unemployment rate, consumer price index or private consumption, based on online activity data sourced from Google Trends, Twitter (rebranded to X) and mobile devices. Based on a systematic search of publications indexed on the Web of Science and Scopus databases, the analysis of a final set of 56 publications covers the publication history of the data sources, the methods used to model the data and the predictive accuracy of information from such data sources. The paper also discusses the limitations and challenges of using online activity data for macroeconomic predictions. The review concludes that online activity data can be a valuable source of information for predicting macroeconomic indicators. However, one must consider certain limitations and challenges to improve the models' accuracy and reliability. © 2024 - IOS Press. All rights reserved.

2024

Real-time nowcasting the monthly unemployment rates with daily Google Trends data

Authors
Costa, EA; Silva, ME; Gbylik Sikorska, M;

Publication
SOCIO-ECONOMIC PLANNING SCIENCES

Abstract
Policymakers often have to make decisions based on incomplete economic data because of the usual delay in publishing official statistics. To circumvent this issue, researchers use data from Google Trends (GT) as an early indicator of economic performance. Such data have emerged in the literature as alternative and complementary predictors of macroeconomic outcomes, such as the unemployment rate, featuring readiness, public availability and no costs. This study deals with extensive daily GT data to develop a framework to nowcast monthly unemployment rates tailored to work with real-time data availability, resorting to Mixed Data Sampling (MIDAS) regressions. Portugal is chosen as a use case for the methodology since extracting GT data requires the selection of culturally dependent keywords. The nowcasting period spans 2019 to 2021, encompassing the time frame in which the coronavirus pandemic initiated. The findings indicate that using daily GT data with MIDAS provides timely and accurate insights into the unemployment rate, especially during the COVID-19 pandemic, showing accuracy gains even when compared to nowcasts obtained from typical monthly GT data via traditional ARMAX models.

2024

Implications of seasonal and daily variation on methane and ammonia emissions from naturally ventilated dairy cattle barns in a Mediterranean climate: A two-year study

Authors
Rodrigues, ARF; Silva, ME; Silva, VF; Maia, MRG; Cabrita, ARJ; Trindade, H; Fonseca, AJM; Pereira, JLS;

Publication
SCIENCE OF THE TOTAL ENVIRONMENT

Abstract
Seasonal and daily variations of gaseous emissions from naturally ventilated dairy cattle barns are important figures for the establishment of effective and specific mitigation plans. The present study aimed to measure methane (CH4) and ammonia (NH3) emissions in three naturally ventilated dairy cattle barns covering the four seasons for two consecutive years. In each barn, air samples from five indoor locations were drawn by a multipoint sampler to a photoacoustic infrared multigas monitor, along with temperature and relative humidity. Milk production data were also recorded. Results showed seasonal differences for CH4 and NH3 emissions in the three barns with no clear trends within years. Globally, diel CH4 emissions increased in the daytime with high intra-hour variability. The average hourly CH4 emissions (g h-1 livestock unit- 1 (LU)) varied from 8.1 to 11.2 and 6.2 to 20.3 in the dairy barn 1, from 10.1 to 31.4 and 10.9 to 22.8 in the dairy barn 2, and from 1.5 to 8.2 and 13.1 to 22.1 in the dairy barn 3, respectively, in years 1 and 2. Diel NH3 emissions highly varied within hours and increased in the daytime. The average hourly NH3 emissions (g h-1 LU-1) varied from 0.78 to 1.56 and 0.50 to 1.38 in the dairy barn 1, from 1.04 to 3.40 and 0.93 to 1.98 in the dairy barn 2, and from 0.66 to 1.32 and 1.67 to 1.73 in the dairy barn 3, respectively, in years 1 and 2. Moreover, the emission factors of CH4 and NH3 were 309.5 and 30.6 (g day- 1 LU-1), respectively, for naturally ventilated dairy cattle barns. Overall, this study provided a detailed characterization of seasonal and daily gaseous emissions variations highlighting the need for future longitudinal emission studies and identifying an opportunity to better adequate the existing mitigation strategies according to season and daytime.

2024

Characterisation of Dansgaard-Oeschger events in palaeoclimate time series using the matrix profile method

Authors
Barbosa, S; Silva, ME; Rousseau, DD;

Publication
NONLINEAR PROCESSES IN GEOPHYSICS

Abstract
Palaeoclimate time series, reflecting the state of Earth's climate in the distant past, occasionally display very large and rapid shifts showing abrupt climate variability. The identification and characterisation of these abrupt transitions in palaeoclimate records is of particular interest as this allows for understanding of millennial climate variability and the identification of potential tipping points in the context of current climate change. Methods that are able to characterise these events in an objective and automatic way, in a single time series, or across two proxy records are therefore of particular interest. In our study the matrix profile approach is used to describe Dansgaard-Oeschger (DO) events, abrupt warmings detected in the Greenland ice core, and Northern Hemisphere marine and continental records. The results indicate that canonical events DO-19 and DO-20, occurring at around 72 and 76 ka, are the most similar events over the past 110 000 years. These transitions are characterised by matching transitions corresponding to events DO-1, DO-8, and DO-12. They are abrupt, resulting in a rapid shift to warmer conditions, followed by a gradual return to cold conditions. The joint analysis of the delta 18O and Ca2+ time series indicates that the transition corresponding to the DO-19 event is the most similar event across the two time series.

2024

LEARNING PHONOLOGY WITH DATA IN THE CLASSROOM: ENGAGING STUDENTS IN THE CREOLISTIC RESEARCH PROCESS

Authors
Trigo, L; Silva, C; de Almeida, VM;

Publication
INTERNATIONAL JOURNAL OF HUMANITIES AND ARTS COMPUTING-A JOURNAL OF DIGITAL HUMANITIES

Abstract
Phonology is a linguistic discipline that is naturally computational. However, as many researchers are not familiar with the use of digital methods, most of the computation required is still performed by humans. This article presents a training experiment of master's students of the phonology seminar at the University of Porto, bringing the research process directly to the classroom. The experiment was designed to raise students' awareness of the potentialities of combining human and machine computation in phonology. The Centre for Digital Culture and Innovation (CODA) readily embraced this project to showcase the application of digital humanities as humanities in both research and training activities. During this experiment, students were trained to collect and process phonological data using various open-source and free web-based resources. By combining a strict protocol with some individual research freedom, the students were able to make valuable contributions towards Creolistic Studies, while enriching their individual skills. Finally, the interdisciplinary nature of the approach has demonstrated its potential within and beyond the humanities and social sciences fields (e.g., linguistics, archaeology, history, geography, ethnology, sociology, and genetics), by also introducing the students to basic concepts and practices of Open Science and FAIR principles, including Linked Open Data.

  • 19
  • 440