Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by LIAAD

2019

ArrayExpress update - from bulk to single-cell expression data

Authors
Athar, A; Fullgrabe, A; George, N; Iqbal, H; Huerta, L; Ali, A; Snow, C; Fonseca, NA; Petryszak, R; Papatheodorou, I; Sarkans, U; Brazma, A;

Publication
NUCLEIC ACIDS RESEARCH

Abstract
ArrayExpress (https://www.ebi.ac.uk/arrayexpress) is an archive of functional genomics data from a variety of technologies assaying functional modalities of a genome, such as gene expression or promoter occupancy. The number of experiments based on sequencing technologies, in particular RNA-seq experiments, has been increasing over the last few years and submissions of sequencing data have overtaken microarray experiments in the last 12 months. Additionally, there is a significant increase in experiments investigating single cells, rather than bulk samples, known as single-cell RNA-seq. To accommodate these trends, we have substantially changed our submission tool Annotare which, along with raw and processed data, collects all metadata necessary to interpret these experiments. Selected datasets are re-processed and loaded into our sister resource, the value-added Expression Atlas (and its component Single Cell Expression Atlas), which not only enables users to interpret the data easily but also serves as a test for data quality. With an increasing number of studies that combine different assay modalities (multi-omics experiments), a new more general archival resource the BioStudies Database has been developed, which will eventually supersede ArrayExpress. Data submissions will continue unchanged; all existing ArrayExpress data will be incorporated into BioStudies and the existing accession numbers and application programming interfaces will be maintained.

2019

Predicting Blood Donations in a Tertiary Care Center Using Time Series Forecasting

Authors
Bischoff, F; Carmo Koch, Md; Rodrigues, PP;

Publication
ICT for Health Science Research - Proceedings of the EFMI 2019 Special Topic Conference - 7-10 April 2019, Hanover, Germany

Abstract
The current algorithm to support platelets stock management assumes that there are always sufficient whole blood donations (WBD) to produce the required amount of pooled platelets. Unfortunately, blood donation rate is uncertain so there is the need to backup pooled platelets productions with single-donor (apheresis) collections to compensate periods of low WBD. The aim of this work was to predict the daily number of WBD to a tertiary care center to preemptively account for a decrease of platelets production. We have collected 62,248 blood donations during 3 years, the daily count of which was used to feed (standalone and ensemble versions of) six prediction models, which were evaluated using the Mean Absolute Error (MAE). Forecast models have shown better performances with a MAE of about 8.6 donations, 34% better than using means or medians alone. Trend lines of donations are better modeled by autoregressive integrated moving average (ARIMA) using a frequency of 365 days, the trade-off being the need for at least two years of data.

2019

MNAR Imputation with Distributed Healthcare Data

Authors
Pereira, RC; Santos, MS; Rodrigues, PP; Abreu, PH;

Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE, PT II

Abstract
Missing data is a problem found in real-world datasets that has a considerable impact on the learning process of classifiers. Although extensive work has been done in this field, the MNAR mechanism still remains a challenge for the existing imputation methods, mainly because it is not related with any observed information. Focusing on healthcare contexts, MNAR is present in multiple scenarios such as clinical trials where the participants may be quitting the study for reasons related to the outcome that is being measured. This work proposes an approach that uses different sources of information from the same healthcare context to improve the imputation quality and classification performance for datasets with missing data under MNAR. The experiment was performed with several databases from the medical context and the results show that the use of multiple sources of data has a positive impact in the imputation error and classification performance. © 2019, Springer Nature Switzerland AG.

2019

A clinical risk matrix for obstructive sleep apnea using Bayesian network approaches

Authors
Santos, DF; Rodrigues, PP;

Publication
Int. J. Data Sci. Anal.

Abstract
In obstructive sleep apnea, respiratory effort is maintained but ventilation decreases/disappears due to upper-airway partial/total occlusion. This condition affects about 4% of men and 2% of women worldwide. This study aimed to define an auxiliary diagnostic method that can support the decision to perform polysomnography, based on risk and diagnostic factors. Our sample performed polysomnography between January and May 2015. Two Bayesian classifiers were used to build the models: Naïve Bayes and Tree Augmented Naïve Bayes, using 38 variables identified by literature review or just a selection of 6. Area under the ROC curve, sensitivity, specificity and predictive values were evaluated using leave-one-out and cross-validation techniques. From a total of 241 patients, only 194 fulfilled the inclusion criteria, 123 (63%) were male, with a mean age of 58 years, 66 (34%) patients had a normal result and 128 (66%) a diagnosis of obstructive sleep apnea. The cross-validated AUCs for each model were: NB38: 69.2%; TAN38: 69.0%; NB6: 74.6% and TAN6: 63.6%. Regarding risk matrix, female gender presented a starting rate of 8%, comparing to 20% in male gender, almost 3 times higher. The high (34%) proportion of normal results confirms the need for a pre-evaluation prior to polysomnography, making the search for a validated model to screen patients with suspicion of obstructive sleep apnea essential, especially at primary care level.

2019

Guest Editorial Small Things and Big Data: Controversies and Challenges in Digital Healthcare

Authors
Bamidis, PD; Konstantinidis, ST; Rodrigues, PP; Antani, S; Giordano, D;

Publication
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

Abstract

2019

Correction to: A clinical risk matrix for obstructive sleep apnea using Bayesian network approaches

Authors
Santos, DF; Rodrigues, PP;

Publication
Int. J. Data Sci. Anal.

Abstract

  • 196
  • 509