Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by LIAAD

2024

Document Level Event Extraction from Narratives

Authors
Cunha, LF;

Publication
ADVANCES IN INFORMATION RETRIEVAL, ECIR 2024, PT V

Abstract
One of the fundamental tasks in Information Extraction (IE) is Event Extraction (EE), an extensively studied and challenging task [13,15], which aims to identify and classify events from the text. This involves identifying the event's central word (trigger) and its participants (arguments) [1]. These elements capture the event semantics and structure, which have applications in various fields, including biomedical texts [42], cybersecurity [24], economics [12], literature [32], and history [33]. Structured knowledge derived from EE can also benefit other downstream tasks such as Question Answering [20,30], Natural Language Understanding [21], Knowledge Base Graphs [3,37], summarization [8,10,41] and recommendation systems [9,18]. Despite the existence of several English EE systems [2,22,25,26], they face limited portability to other languages [4] and most of them are designed for closed domains, posing difficulties in generalising. Furthermore, most current EE systems restrict their scope to the sentence level, assuming that all arguments are contained within the same sentence as their corresponding trigger. However, real-world scenarios often involve event arguments spanning multiple sentences, highlighting the need for document-level EE.

2024

An Interpretable Human-in-the-Loop Process to Improve Medical Image Classification

Authors
Santos, JC; Santos, MS; Abreu, PH;

Publication
ADVANCES IN INTELLIGENT DATA ANALYSIS XXII, PT I, IDA 2024

Abstract
Medical imaging classification improves patient prognoses by providing information on disease assessment, staging, and treatment response. The high demand for medical imaging acquisition requires the development of effective classification methodologies, occupying deep learning technologies, the pool position for this task. However, the major drawback of such techniques relies on their black-box nature which has delayed their use in real-world scenarios. Interpretability methodologies have emerged as a solution for this problem due to their capacity to translate black-box models into clinical understandable information. The most promising interpretability methodologies are concept-based techniques that can understand the predictions of a deep neural network through user-specified concepts. Concept activation regions and concept activation vectors are concept-based implementations that provide global explanations for the prediction of neural networks. The explanations provided allow the identification of the relationships that the network learned and can be used to identify possible errors during training. In this work, concept activation vectors and concept activation regions are used to identify flaws in neural network training and how this weakness can be mitigated in a human-in-the-loop process automatically improving the performance and trustworthiness of the classifier. To reach such a goal, three phases have been defined: training baseline classifiers, applying the concept-based interpretability, and implementing a human-in-the-loop approach to improve classifier performance. Four medical imaging datasets of different modalities are included in this study to prove the generality of the proposed method. The results identified concepts in each dataset that presented flaws in the classifier training and consequently, the human-in-the-loop approach validated by a team of 2 clinicians team achieved a statistically significant improvement.

2023

Unsupervised Online Event Ranking for IT Operations

Authors
Mendes, TC; Barata, AA; Pereira, M; Moreira, JM; Camacho, R; Sousa, RT;

Publication
Intelligent Data Engineering and Automated Learning - IDEAL 2023 - 24th International Conference, Évora, Portugal, November 22-24, 2023, Proceedings

Abstract
Keeping high service levels of a fast-growing number of servers is crucial and challenging for IT operations teams. Online monitoring systems trigger many occurrences that experts find hard to keep up with. In addition, most of the triggered warnings do not correspond to real, critical problems, making it difficult for technicians to know which to focus on and address in a timely manner. Outlier and concept drift detection techniques can be applied to multiple streams of readings related to server monitoring metrics, but they also generate many False Positives. Ranking algorithms can already prioritize relevant results in information retrieval and recommender systems. However, these approaches are supervised, making them inapplicable in event detection on data streams. We propose a framework that combines event aggregations and uses a customized clustering algorithm to score and rank alarms in the context of IT operations. To the best of our knowledge, this is the first unsupervised, online, high-dimensional approach to rank IT ops events and contributes to advancing knowledge about associated key concepts and challenges of this problem. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2023.

2023

Time-Series Pattern Verification in CNC Machining Data

Authors
Silva, JM; Nogueira, AR; Pinto, J; Alves, AC; Sousa, R;

Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT I

Abstract
Effective quality control is essential for efficient and successful manufacturing processes in the era of Industry 4.0. Artificial Intelligence solutions are increasingly employed to enhance the accuracy and efficiency of quality control methods. In Computer Numerical Control machining, challenges involve identifying and verifying specific patterns of interest or trends in a time-series dataset. However, this can be a challenge due to the extensive diversity. Therefore, this work aims to develop a methodology capable of verifying the presence of a specific pattern of interest in a given collection of time-series. This study mainly focuses on evaluating One-Class Classification techniques using Linear Frequency Cepstral Coefficients to describe the patterns on the time-series. A real-world dataset produced by turning machines was used, where a time-series with a certain pattern needed to be verified to monitor the wear offset. The initial findings reveal that the classifiers can accurately distinguish between the time-series' target pattern and the remaining data. Specifically, the One-Class Support Vector Machine achieves a classification accuracy of 95.6 % +/- 1.2 and an F1-score of 95.4 % +/- 1.3.

2023

Predicting US Energy Consumption Utilizing Artificial Neural Network

Authors
Pasandidehpoor, M; Mendes Moreira, J; Rahman Mohammadpour, S; Sousa, RT;

Publication
Handbook of Smart Energy Systems

Abstract

2023

Geovisualisation Tools for Reporting and Monitoring Transthyretin-Associated Familial Amyloid Polyneuropathy Disease

Authors
Lopo, RX; Jorge, AM; Pedroto, M;

Publication
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT I

Abstract
Transthyretin-associated Familial Amyloid Polyneuropathy (TTR-FAP) is a chronic fatal disease with a high incidence in Portugal. It is therefore relevant to provide professionals and citizens with a tool that enables a detailed geographical and territorial study. For this reason, we have developed an web based application that brings together techniques applied to spatial data that allow the study of the historical progression and growth of cases in patients' residential areas and areas of origin as well as an epidemic forecast. The tool enables the exploration of geographical longitudinal data at national, district and county levels. High density regions and periods can be visually identified according to parameters selected by the user. The visual evaluation of the data and its comparison across different time spans of the disease era can have an impact on more informed decision making by those working with patients to improve their quality of life, treatment or follow-up. The tool is available online for data exploration and its code is available on GitHub for adaptation to other geospatial scenarios.

  • 20
  • 440