Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by LIAAD

2023

A unifying view of class overlap and imbalance: Key concepts, multi-view panorama, and open avenues for research

Authors
Santos, MS; Abreu, PH; Japkowicz, N; Fernandez, A; Santos, J;

Publication
INFORMATION FUSION

Abstract
The combination of class imbalance and overlap is currently one of the most challenging issues in machine learning. While seminal work focused on establishing class overlap as a complicating factor for classification tasks in imbalanced domains, ongoing research mostly concerns the study of their synergy over real-word applications. However, given the lack of a well-formulated definition and measurement of class overlap in real-world domains, especially in the presence of class imbalance, the research community has not yet reached a consensus on the characterisation of both problems. This naturally complicates the evaluation of existing approaches to address these issues simultaneously and prevents future research from moving towards the devise of specialised solutions. In this work, we advocate for a unified view of the problem of class overlap in imbalanced domains. Acknowledging class overlap as the overarching problem - since it has proven to be more harmful for classification tasks than class imbalance - we start by discussing the key concepts associated to its definition, identification, and measurement in real-world domains, while advocating for a characterisation of the problem that attends to multiple sources of complexity. We then provide an overview of existing data complexity measures and establish the link to what specific types of class overlap problems these measures cover, proposing a novel taxonomy of class overlap complexity measures. Additionally, we characterise the relationship between measures, the insights they provide, and discuss to what extent they account for class imbalance. Finally, we systematise the current body of knowledge on the topic across several branches of Machine Learning (Data Analysis, Data Preprocessing, Algorithm Design, and Meta-learning), identifying existing limitations and discussing possible lines for future research.

2023

Evaluating the faithfulness of saliency maps in explaining deep learning models using realistic perturbations

Authors
Amorim, JP; Abreu, PH; Santos, J; Cortes, M; Vila, V;

Publication
INFORMATION PROCESSING & MANAGEMENT

Abstract
Deep Learning has reached human-level performance in several medical tasks including clas-sification of histopathological images. Continuous effort has been made at finding effective strategies to interpret these types of models, among them saliency maps, which depict the weights of the pixels on the classification as an heatmap of intensity values, have been by far the most used for image classification. However, there is a lack of tools for the systematic evaluation of saliency maps, and existing works introduce non-natural noise such as random or uniform values. To address this issue, we propose an approach to evaluate the faithfulness of the saliency maps by introducing natural perturbations in the image, based on oppose-class substitution, and studying their impact on evaluation metrics adapted from saliency models. We validate the proposed approach on a breast cancer metastases detection dataset PatchCamelyon with 327,680 patches of histopathological images of sentinel lymph node sections. Results show that GradCAM, Guided-GradCAM and gradient-based saliency map methods are sensitive to natural perturbations and correlate to the presence of tumor evidence in the image. Overall, this approach proves to be a solution for the validation of saliency map methods without introducing confounding variables and shows potential for application on other medical imaging tasks.

2023

Interpreting Deep Machine Learning Models: An Easy Guide for Oncologists

Authors
Amorim, JP; Abreu, PH; Fernandez, A; Reyes, M; Santos, J; Abreu, MH;

Publication
IEEE REVIEWS IN BIOMEDICAL ENGINEERING

Abstract
Healthcare agents, in particular in the oncology field, are currently collecting vast amounts of diverse patient data. In this context, some decision-support systems, mostly based on deep learning techniques, have already been approved for clinical purposes. Despite all the efforts in introducing artificial intelligence methods in the workflow of clinicians, its lack of interpretability - understand how the methods make decisions - still inhibits their dissemination in clinical practice. The aim of this article is to present an easy guide for oncologists explaining how these methods make decisions and illustrating the strategies to explain them. Theoretical concepts were illustrated based on oncological examples and a literature review of research works was performed from PubMed between January 2014 to September 2020, using deep learning techniques, interpretability and oncology as keywords. Overall, more than 60% are related to breast, skin or brain cancers and the majority focused on explaining the importance of tumor characteristics (e.g. dimension, shape) in the predictions. The most used computational methods are multilayer perceptrons and convolutional neural networks. Nevertheless, despite being successfully applied in different cancers scenarios, endowing deep learning techniques with interpretability, while maintaining their performance, continues to be one of the greatest challenges of artificial intelligence.

2023

FAIR-FATE: Fair Federated Learning with Momentum

Authors
Salazar, T; Fernandes, M; Araújo, H; Abreu, PH;

Publication
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Abstract

2023

Beyond Heart Murmur Detection: Automatic Murmur Grading From Phonocardiogram

Authors
Elola, A; Aramendi, E; Oliveira, J; Renna, F; Coimbra, MT; Reyna, MA; Sameni, R; Clifford, GD; Rad, AB;

Publication
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

Abstract
Objective: Murmurs are abnormal heart sounds, identified by experts through cardiac auscultation. The murmur grade, a quantitative measure of the murmur intensity, is strongly correlated with the patient's clinical condition. This work aims to estimate each patient's murmur grade (i.e., absent, soft, loud) from multiple auscultation location phonocardiograms (PCGs) of a large population of pediatric patients from a low-resource rural area. Methods: The Mel spectrogram representation of each PCG recording is given to an ensemble of 15 convolutional residual neural networks with channel-wise attention mechanisms to classify each PCG recording. The final murmur grade for each patient is derived based on the proposed decision rule and considering all estimated labels for available recordings. The proposed method is cross-validated on a dataset consisting of 3456 PCG recordings from 1007 patients using a stratified ten-fold cross-validation. Additionally, the method was tested on a hidden test set comprised of 1538 PCG recordings from 442 patients. Results: The overall cross-validation performances for patient-level murmur gradings are 86.3% and 81.6% in terms of the unweighted average of sensitivities and F1-scores, respectively. The sensitivities (and F1-scores) for absent, soft, and loud murmurs are 90.7% (93.6%), 75.8% (66.8%), and 92.3% (84.2%), respectively. On the test set, the algorithm achieves an unweighted average of sensitivities of 80.4% and an F1-score of 75.8%. Conclusions: This study provides a potential approach for algorithmic pre-screening in low-resource settings with relatively high expert screening costs. Significance: The proposed method represents a significant step beyond detection of murmurs, providing characterization of intensity, which may provide an enhanced classification of clinical outcomes.

2023

Heart murmur detection from phonocardiogram recordings: The George B. Moody PhysioNet Challenge 2022

Authors
Reyna, A; Kiarashi, Y; Elola, A; Oliveira, J; Renna, F; Gu, A; Perez Alday, A; Sadr, N; Sharma, A; Kpodonu, J; Mattos, S; Coimbra, T; Sameni, R; Rad, AB; Clifford, D;

Publication
PLOS Digital Health

Abstract
Cardiac auscultation is an accessible diagnostic screening tool that can help to identify patients with heart murmurs, who may need follow-up diagnostic screening and treatment for abnormal cardiac function. However, experts are needed to interpret the heart sounds, limiting the accessibility of cardiac auscultation in resource-constrained environments. Therefore, the George B. Moody PhysioNet Challenge 2022 invited teams to develop algorithmic approaches for detecting heart murmurs and abnormal cardiac function from phonocardiogram (PCG) recordings of heart sounds. For the Challenge, we sourced 5272 PCG recordings from 1452 primarily pediatric patients in rural Brazil, and we invited teams to implement diagnostic screening algorithms for detecting heart murmurs and abnormal cardiac function from the recordings. We required the participants to submit the complete training and inference code for their algorithms, improving the transparency, reproducibility, and utility of their work. We also devised an evaluation metric that considered the costs of screening, diagnosis, misdiagnosis, and treatment, allowing us to investigate the benefits of algorithmic diagnostic screening and facilitate the development of more clinically relevant algorithms. We received 779 algorithms from 87 teams during the Challenge, resulting in 53 working codebases for detecting heart murmurs and abnormal cardiac function from PCG recordings. These algorithms represent a diversity of approaches from both academia and industry, including methods that use more traditional machine learning techniques with engineered clinical and statistical features as well as methods that rely primarily on deep learning models to discover informative features. The use of heart sound recordings for identifying heart murmurs and abnormal cardiac function allowed us to explore the potential of algorithmic approaches for providing more accessible diagnostic screening in resourceconstrained environments. The submission of working, open-source algorithms and the use of novel evaluation metrics supported the reproducibility, generalizability, and clinical relevance of the research from the Challenge. © 2023 Reyna et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

  • 76
  • 497