2023
Authors
Amorim, JP; Abreu, PH; Fernandez, A; Reyes, M; Santos, J; Abreu, MH;
Publication
IEEE REVIEWS IN BIOMEDICAL ENGINEERING
Abstract
Healthcare agents, in particular in the oncology field, are currently collecting vast amounts of diverse patient data. In this context, some decision-support systems, mostly based on deep learning techniques, have already been approved for clinical purposes. Despite all the efforts in introducing artificial intelligence methods in the workflow of clinicians, its lack of interpretability - understand how the methods make decisions - still inhibits their dissemination in clinical practice. The aim of this article is to present an easy guide for oncologists explaining how these methods make decisions and illustrating the strategies to explain them. Theoretical concepts were illustrated based on oncological examples and a literature review of research works was performed from PubMed between January 2014 to September 2020, using deep learning techniques, interpretability and oncology as keywords. Overall, more than 60% are related to breast, skin or brain cancers and the majority focused on explaining the importance of tumor characteristics (e.g. dimension, shape) in the predictions. The most used computational methods are multilayer perceptrons and convolutional neural networks. Nevertheless, despite being successfully applied in different cancers scenarios, endowing deep learning techniques with interpretability, while maintaining their performance, continues to be one of the greatest challenges of artificial intelligence.
2023
Authors
Salazar, T; Fernandes, M; Araújo, H; Abreu, PH;
Publication
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Abstract
2023
Authors
Elola, A; Aramendi, E; Oliveira, J; Renna, F; Coimbra, MT; Reyna, MA; Sameni, R; Clifford, GD; Rad, AB;
Publication
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS
Abstract
Objective: Murmurs are abnormal heart sounds, identified by experts through cardiac auscultation. The murmur grade, a quantitative measure of the murmur intensity, is strongly correlated with the patient's clinical condition. This work aims to estimate each patient's murmur grade (i.e., absent, soft, loud) from multiple auscultation location phonocardiograms (PCGs) of a large population of pediatric patients from a low-resource rural area. Methods: The Mel spectrogram representation of each PCG recording is given to an ensemble of 15 convolutional residual neural networks with channel-wise attention mechanisms to classify each PCG recording. The final murmur grade for each patient is derived based on the proposed decision rule and considering all estimated labels for available recordings. The proposed method is cross-validated on a dataset consisting of 3456 PCG recordings from 1007 patients using a stratified ten-fold cross-validation. Additionally, the method was tested on a hidden test set comprised of 1538 PCG recordings from 442 patients. Results: The overall cross-validation performances for patient-level murmur gradings are 86.3% and 81.6% in terms of the unweighted average of sensitivities and F1-scores, respectively. The sensitivities (and F1-scores) for absent, soft, and loud murmurs are 90.7% (93.6%), 75.8% (66.8%), and 92.3% (84.2%), respectively. On the test set, the algorithm achieves an unweighted average of sensitivities of 80.4% and an F1-score of 75.8%. Conclusions: This study provides a potential approach for algorithmic pre-screening in low-resource settings with relatively high expert screening costs. Significance: The proposed method represents a significant step beyond detection of murmurs, providing characterization of intensity, which may provide an enhanced classification of clinical outcomes.
2023
Authors
Reyna, A; Kiarashi, Y; Elola, A; Oliveira, J; Renna, F; Gu, A; Perez Alday, A; Sadr, N; Sharma, A; Kpodonu, J; Mattos, S; Coimbra, T; Sameni, R; Rad, AB; Clifford, D;
Publication
PLOS Digital Health
Abstract
Cardiac auscultation is an accessible diagnostic screening tool that can help to identify patients with heart murmurs, who may need follow-up diagnostic screening and treatment for abnormal cardiac function. However, experts are needed to interpret the heart sounds, limiting the accessibility of cardiac auscultation in resource-constrained environments. Therefore, the George B. Moody PhysioNet Challenge 2022 invited teams to develop algorithmic approaches for detecting heart murmurs and abnormal cardiac function from phonocardiogram (PCG) recordings of heart sounds. For the Challenge, we sourced 5272 PCG recordings from 1452 primarily pediatric patients in rural Brazil, and we invited teams to implement diagnostic screening algorithms for detecting heart murmurs and abnormal cardiac function from the recordings. We required the participants to submit the complete training and inference code for their algorithms, improving the transparency, reproducibility, and utility of their work. We also devised an evaluation metric that considered the costs of screening, diagnosis, misdiagnosis, and treatment, allowing us to investigate the benefits of algorithmic diagnostic screening and facilitate the development of more clinically relevant algorithms. We received 779 algorithms from 87 teams during the Challenge, resulting in 53 working codebases for detecting heart murmurs and abnormal cardiac function from PCG recordings. These algorithms represent a diversity of approaches from both academia and industry, including methods that use more traditional machine learning techniques with engineered clinical and statistical features as well as methods that rely primarily on deep learning models to discover informative features. The use of heart sound recordings for identifying heart murmurs and abnormal cardiac function allowed us to explore the potential of algorithmic approaches for providing more accessible diagnostic screening in resourceconstrained environments. The submission of working, open-source algorithms and the use of novel evaluation metrics supported the reproducibility, generalizability, and clinical relevance of the research from the Challenge. © 2023 Reyna et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
2023
Authors
Clemente, F; Ribeiro, GM; Quemy, A; Santos, MS; Pereira, RC; Barros, A;
Publication
NEUROCOMPUTING
Abstract
ydata-profiling is an open-source Python package for advanced exploratory data analysis that enables users to generate data profiling reports in a simple, fast, and efficient manner, fostering a standardized and visual understanding of the data. Beyond traditional descriptive properties and statistics, ydata-profiling follows a Data-Centric AI approach to exploratory analysis, as it focuses on the automatic detection and highlighting of complex data characteristics often associated with potential data quality issues, such as high ratios of missing or imbalanced data, infinite, unique, or constant values, skewness, high correlation, high cardinality, non-stationarity, seasonality, duplicate records, and other inconsistencies. The source code, documentation, and examples are available in the GitHub repository: https://github.com/ydataai/ydata-profiling.
2023
Authors
Barbosa, B; Shojaei, AS; Miranda, H;
Publication
BALTIC JOURNAL OF MANAGEMENT
Abstract
PurposeThis study analyzes the impact of packaging-free practices in food retail stores, particularly supermarkets, on customer loyalty.Design/methodology/approachBased on the literature on the impacts of sustainable practices and corporate social responsibility (CSR) policies on consumer behavior, this study defined a set of seven hypotheses that were tested using data collected from 447 consumers that regularly buy food products at supermarkets. The data were subjected to structural equation modeling using SmartPLS.FindingsThis study confirmed that packaging-free practices positively influence brand image, brand trust, satisfaction and customer loyalty. The expected positive impacts of brand image and satisfaction on customer loyalty were also confirmed. However, the expected impact of brand trust on customer loyalty was not confirmed.Practical implicationsThis article demonstrates how a competitive sector can reap benefits from implementing sustainable practices in the operational domain, particularly by offering packaging-free products at the point of purchase. Thus, as recommended, general retail stores (e.g. supermarkets) gradually increase the stores' offering of packaging-free food products, as this practice has been shown to have positive impacts not only on brand image, but also on customer satisfaction and loyalty.Originality/valueThis study extends the literature on the effects of sustainable practices on customer loyalty, by focusing on a specific practice. Furthermore, this study contributes to the advancement of research on packaging-free practices in retail by developing a research framework and providing evidence on the direct and indirect effects of this specific practice on customer loyalty.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.