Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by LIAAD

2021

Using network features for credit scoring in microfinance

Authors
Paraiso, P; Ruiz, S; Gomes, P; Rodrigues, L; Gama, J;

Publication
INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS

Abstract
The usage of non-traditional data in credit scoring, from microfinance institutions, is very useful when trying to address the problem, very common in emerging markets, of the lack of a verifiable customers' credit history. In this context, this paper relies on data acquired from smartphones in a loan classification problem. We conduct a set of experiments concerning feature selection, strategies to deal with imbalanced datasets and algorithm choice, to define a baseline model. This model is, then, compared to others adding network features to the original ones. For that comparison, we generate a network that links a given user to its phone book contacts which are users of a given mobile application, taking into account the ethics and privacy concerns involved, and use some feature extraction techniques, such as the introduction of centrality measures and the definition of node embeddings, in order to capture certain aspects of the network's topology. Several node embedding algorithms are tested, but only Node2Vec proves to be significantly better than the baseline model, applying Friedman's post hoc tests. This node embedding algorithm outperforms all the other, representing a relative improvement, in comparison with the baseline model, of 5.74% on the mean accuracy, 7.13% on the area under the Receiver Operating Characteristic curve and 30.83% on the Kolmogorov-Smirnov statistic scores. This method, therefore, proves to be very promising when trying to discriminate between "good" and "bad" customers, in credit scoring classification problems.

2021

Artificial intelligence, cyber-threats and Industry 4.0: challenges and opportunities

Authors
Becue, A; Praca, I; Gama, J;

Publication
ARTIFICIAL INTELLIGENCE REVIEW

Abstract
This survey paper discusses opportunities and threats of using artificial intelligence (AI) technology in the manufacturing sector with consideration for offensive and defensive uses of such technology. It starts with an introduction of Industry 4.0 concept and an understanding of AI use in this context. Then provides elements of security principles and detection techniques applied to operational technology (OT) which forms the main attack surface of manufacturing systems. As some intrusion detection systems (IDS) already involve some AI-based techniques, we focus on existing machine-learning and data-mining based techniques in use for intrusion detection. This article presents the major strengths and weaknesses of the main techniques in use. We also discuss an assessment of their relevance for application to OT, from the manufacturer point of view. Another part of the paper introduces the essential drivers and principles of Industry 4.0, providing insights on the advent of AI in manufacturing systems as well as an understanding of the new set of challenges it implies. AI-based techniques for production monitoring, optimisation and control are proposed with insights on several application cases. The related technical, operational and security challenges are discussed and an understanding of the impact of such transition on current security practices is then provided in more details. The final part of the report further develops a vision of security challenges for Industry 4.0. It addresses aspects of orchestration of distributed detection techniques, introduces an approach to adversarial/robust AI development and concludes with human-machine behaviour monitoring requirements.

2021

Data stream analysis: Foundations, major tasks and tools

Authors
Bahri, M; Bifet, A; Gama, J; Gomes, HM; Maniu, S;

Publication
WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY

Abstract
The significant growth of interconnected Internet-of-Things (IoT) devices, the use of social networks, along with the evolution of technology in different domains, lead to a rise in the volume of data generated continuously from multiple systems. Valuable information can be derived from these evolving data streams by applying machine learning. In practice, several critical issues emerge when extracting useful knowledge from these potentially infinite data, mainly because of their evolving nature and high arrival rate which implies an inability to store them entirely. In this work, we provide a comprehensive survey that discusses the research constraints and the current state-of-the-art in this vibrant framework. Moreover, we present an updated overview of the latest contributions proposed in different stream mining tasks, particularly classification, regression, clustering, and frequent patterns. This article is categorized under: Fundamental Concepts of Data and Knowledge > Key Design Issues in Data Mining Fundamental Concepts of Data and Knowledge > Motivation and Emergence of Data Mining

2021

How can I choose an explainer? An Application-grounded Evaluation of Post-hoc Explanations

Authors
Jesus, SM; Belém, C; Balayan, V; Bento, J; Saleiro, P; Bizarro, P; Gama, J;

Publication
CoRR

Abstract

2021

Shedding Light on the African Enigma: In Vitro Testing of Homo sapiens-Helicobacter pylori Coevolution

Authors
Cavadas, B; Leite, M; Pedro, N; Magalhaes, AC; Melo, J; Correia, M; Maximo, V; Camacho, R; Fonseca, NA; Figueiredo, C; Pereira, L;

Publication
MICROORGANISMS

Abstract
The continuous characterization of genome-wide diversity in population and case-cohort samples, allied to the development of new algorithms, are shedding light on host ancestry impact and selection events on various infectious diseases. Especially interesting are the long-standing associations between humans and certain bacteria, such as the case of Helicobacter pylori, which could have been strong drivers of adaptation leading to coevolution. Some evidence on admixed gastric cancer cohorts have been suggested as supporting Homo-Helicobacter coevolution, but reliable experimental data that control both the bacterium and the host ancestries are lacking. Here, we conducted the first in vitro coinfection assays with dual human- and bacterium-matched and -mismatched ancestries, in African and European backgrounds, to evaluate the genome wide gene expression host response to H. pylori. Our results showed that: (1) the host response to H. pylori infection was greatly shaped by the human ancestry, with variability on innate immune system and metabolism; (2) African human ancestry showed signs of coevolution with H. pylori while European ancestry appeared to be maladapted; and (3) mismatched ancestry did not seem to be an important differentiator of gene expression at the initial stages of infection as assayed here.

2021

Metabarcoding with MinION: Speeding up the detection of invasive aquatic species using environmental DNA and nanopore sequencing

Authors
Egeter, B; Veríssimo, J; Lopes-Lima, M; chaves, c; Pinto, J; Riccardi, N; Beja, P; Fonseca, NA;

Publication
ARPHA Conference Abstracts

Abstract
Traditional detection of aquatic invasive species, via morphological identification is often time-consuming and can require a high level of taxonomic expertise, leading to delayed mitigation responses. Environmental DNA (eDNA) detection approaches of multiple species using Illumina-based sequencing technology have been used to overcome these hindrances, but sample processing is often lengthy. More recently, portable nanopore sequencing technology has become available, which has the potential to make molecular detection of invasive species more widely accessible and to substantially decrease sample turnaround times. However, nanopore-sequenced reads have a much higher error rate than those produced by Illumina platforms, which has so far hindered the adoption of this technology. We provide a detailed laboratory protocol and bioinformatic tools to increase the reliability of nanopore sequencing to detect invasive species, and we test its application using invasive bivalves. We sampled water from sites with pre-existing bivalve occurrence and abundance data, and contrasting bivalve communities, in Italy and Portugal. We extracted, amplified and sequenced eDNA with a turnaround of 3.5 days. The majority of processed reads were = 99 % identical to reference sequences. There were no taxa detected other than those known to occur. The lack of detections of some species at some sites could be explained by their known low abundances. The approach is now being tested on other target taxa such as fish and other vertebrates.

  • 79
  • 429