2024
Authors
Vieira, PC; Montrezol, JP; Vieira, JT; Gama, J;
Publication
ADVANCES IN INTELLIGENT DATA ANALYSIS XXII, PT II, IDA 2024
Abstract
We present S+t-SNE, an adaptation of the t-SNE algorithm designed to handle infinite data streams. The core idea behind S+t-SNE is to update the t-SNE embedding incrementally as new data arrives, ensuring scalability and adaptability to handle streaming scenarios. By selecting the most important points at each step, the algorithm ensures scalability while keeping informative visualisations. By employing a blind method for drift management, the algorithm adjusts the embedding space, which facilitates the visualisation of evolving data dynamics. Our experimental evaluations demonstrate the effectiveness and efficiency of S+t-SNE, whilst highlighting its ability to capture patterns in a streaming scenario. We hope our approach offers researchers and practitioners a real-time tool for understanding and interpreting high-dimensional data.
2024
Authors
Ukil, A; Majumdar, A; Jara, AJ; Gama, J;
Publication
IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024 - Workshops, Seoul, Republic of Korea, April 14-19, 2024
Abstract
Deep neural networks (DNN) are used to analyze images, videos, signals and texts require a lot of memory and intensive computing power. For example, the very successful GPT4 model contains more than a few trillion parameters. Although such models are of great impact, but they have been used very little in real-world applications, including industrial Internet of Things, self-driving cars, algorithmic health monitoring for use in limited mobile or edge devices. The requirement to run large models on resource-constrained peripherals has led to significant research interest in compressing DNN models. Signal processing researchers have traditionally advocated data (image/video/audio) compression, and by the way, many of these techniques are used for DNN compression. For example, source coding is a basic technique that has been widely used to compress various DNN models. In this paper, we present our views on the use of signal processing methods for DNN model compression. © 2024 IEEE.
2024
Authors
Bécue, A; Gama, J; Brito, PQ;
Publication
ARTIFICIAL INTELLIGENCE REVIEW
Abstract
The classic literature about innovation conveys innovation strategy the leading and starting role to generate business growth due to technology development and more effective managerial practices. The advent of Artificial Intelligence (AI) however reverts this paradigm in the context of Industry 5.0. The focus is moving from how innovation fosters AI to how AI fosters innovation. Therefore, our research question can be stated as follows: What factors influence the effect of AI on Innovation Capacity in the context of Industry 5.0? To address this question we conduct a scoping review of a vast body of literature spanning engineering, human sciences, and management science. We conduct a keyword-based literature search completed by bibliographic analysis, then classify the resulting 333 works into 3 classes and 15 clusters which we critically analyze. We extract 3 hypotheses setting associations between 4 factors: company age, AI maturity, manufacturing strategy, and innovation capacity. The review uncovers several debates and research gaps left unsolved by the existing literature. In particular, it raises the debate whether the Industry5.0 promise can be achieved while Artificial General Intelligence (AGI) remains out of reach. It explores diverging possible futures driven toward social manufacturing or mass customization. Finally, it discusses alternative AI policies and their incidence on open and internal innovation. We conclude that the effect of AI on innovation capacity can be synergic, deceptive, or substitutive depending on the alignment of the uncovered factors. Moreover, we identify a set of 12 indicators enabling us to measure these factors to predict AI's effect on innovation capacity. These findings provide researchers with a new understanding of the interplay between artificial intelligence and human intelligence. They provide practitioners with decision metrics for a successful transition to Industry 5.0.
2024
Authors
Zafra, A; Veloso, B; Gama, J;
Publication
Hybrid Artificial Intelligent Systems - 19th International Conference, HAIS 2024, Salamanca, Spain, October 9-11, 2024, Proceedings, Part I
Abstract
Early identification of failures is a critical task in predictive maintenance, preventing potential problems before they manifest and resulting in substantial time and cost savings for industries. We propose an approach that predicts failures in the near future. First, a deep learning model combining long short-term memory and convolutional neural network architectures predicts signals for a future time horizon using real-time data. In the second step, an autoencoder based on convolutional neural networks detects anomalies in these predicted signals. Finally, a verification step ensures that a fault is considered reliable only if it is corroborated by anomalies in multiple signals simultaneously. We validate our approach using publicly available Air Production Unit (APU) data from Porto metro trains. Two significant conclusions emerge from our study. Firstly, experimental results confirm the effectiveness of our approach, demonstrating a high fault detection rate and a reduced number of false positives. Secondly, the adaptability of this proposal allows for the customization of configuration of different time horizons and relationship between the signals to meet specific detection requirements. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.
2024
Authors
Silva, P; Vinagre, J; Gama, J;
Publication
Frontiers in Artificial Intelligence and Applications - ECAI 2024
Abstract
2024
Authors
Bacelar Silva, GM; Cox, JF III; Rodrigues, P;
Publication
HEALTH SYSTEMS
Abstract
Lack of timeliness and capacity are seen as fundamental problems that jeopardise healthcare delivery systems everywhere. Many believe the shortage of medical providers is causing this timeliness problem. This action research presents how one doctor implemented the theory of constraints (TOC) to improve the throughput (quantity of patients treated) of his ophthalmology imaging practice by 64% in a few weeks with little to no expense. The five focusing steps (5FS) guided the TOC implementation - which included the drum-buffer-rope scheduling and buffer management - and occurred in a matter of days. The implementation provided significant bottom-line results almost immediately. This article explains each step of the 5FS in general terms followed by specific applications to healthcare services, as well as the detailed use in this action research. Although TOC successfully addressed the practice problems, this implementation was not sustained after the TOC champion left the organisation. However, this drawback provided valuable knowledge. The article provides insightful knowledge to help readers implement TOC in their environments to provide immediate and significant results at little to no expense.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.