2016
Authors
Almeida, J; Ferreira, A; Matias, B; Dias, A; Martins, A; Silva, F; Oliveira, J; Sousa, P; Moreira, M; Miranda, T; Almeida, C; Silva, E;
Publication
OCEANS 2016 MTS/IEEE MONTEREY
Abstract
This paper addresses a three-dimensional (3D) reconstruction of a flooded open pit mine with an autonomous surface vehicle (ASV) and unmanned aerial vehicle (UAV). The ROAZ USV and the Otus UAV were used to provide the underwater bathymetric map and aerial 3D reconstruction based from image data. This work was performed wihtin the context of the European researcj project VAMOS with the objective of developing robotic tools for efficient underwater mining
2016
Authors
Campos, R; Oliveira, T; Cruz, N; Matos, A; Almeida, JM;
Publication
OCEANS 2016 - SHANGHAI
Abstract
The ocean and the Blue Economy are increasingly top priorities worldwide. The immense ocean territory in the planet and its huge associated economical potential is envisioned to increase the activity at the ocean in the forthcoming years. The support of these activities, and the convergence to the Internet of Things paradigm, will demand wireless and mobile communications to connect humans and systems at remote ocean areas. Currently, there is no communications solution enabling cost-effective broadband Internet access at remote ocean areas in alternative to expensive, narrowband satellite communications. This paper presents the maritime communications solution being developed in the BLUECOM+ project. The BLUECOM+ solution enables cost-effective broadband Internet access at remote ocean areas using standard wireless access technologies, e.g., GPRS/UMTS/LTE and Wi-Fi. Its novelty lies on the joint use of TV white spaces for long range radio communications, tethered balloons for lifting communications nodes high above the ocean surface, multi-hop relaying techniques for radio range extension, and standard access networks at the ocean. Simulation results prove it is possible to reach radio ranges beyond 100 km and bitrates in excess of 3 Mbit/s using a two-hop land-sea communications chain.
2015
Authors
Faria, A; Almeida, J; Dias, A; Martins, A; Silva, E;
Publication
OCEANS 2015 - GENOVA
Abstract
This work presents an automatic calibration method for a vision based external underwater ground-truth positioning system. These systems are a relevant tool in benchmarking and assessing the quality of research in underwater robotics applications. A stereo vision system can in suitable environments such as test tanks or in clear water conditions provide accurate position with low cost and flexible operation. In this work we present a two step extrinsic camera parameter calibration procedure in order to reduce the setup time and provide accurate results. The proposed method uses a planar homography decomposition in order to determine the relative camera poses and the determination of vanishing points of detected lines in the image to obtain the global pose of the stereo rig in the reference frame. This method was applied to our external vision based ground-truth at the INESC TEC/Robotics test tank. Results are presented in comparison with an precise calibration performed using points obtained from an accurate 3D LIDAR modelling of the environment.
2015
Authors
Dias, A; Capitan, J; Merino, L; Almeida, J; Lima, P; Silva, E;
Publication
2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA)
Abstract
Target tracking with bearing-only sensors is a challenging problem when the target moves dynamically in complex scenarios. Besides the partial observability of such sensors, they have limited field of views, occlusions can occur, etc. In those cases, cooperative approaches with multiple tracking robots are interesting, but the different sources of uncertain information need to be considered appropriately in order to achieve better estimates. Even though there exist probabilistic filters that can estimate the position of a target dealing with uncertainties, bearing-only measurements bring usually additional problems with initialization and data association. In this paper, we propose a multi-robot triangulation method with a dynamic baseline that can triangulate bearing-only measurements in a probabilistic manner to produce 3D observations. This method is combined with a decentralized stochastic filter and used to tackle those initialization and data association issues. The approach is validated with simulations and field experiments where a team of aerial and ground robots with cameras track a dynamic target.
2015
Authors
Matias, B; Oliveira, H; Almeida, J; Dias, A; Ferreira, H; Martins, A; Silva, E;
Publication
OCEANS 2015 - GENOVA
Abstract
This work presents a low cost RTK-GPS system for localization of unmanned surface vehicles. The system is based on the use of standard low cost L1 band receivers and in the RTKlib open source software library. Mission scenarios with multiple robotic vehicles are addressed as the ones envisioned in the ICARUS search and rescue case where the possibility of having a moving RTK base on a large USV and multiple smaller vehicles acting as rovers in a local communication network allows for local relative localization with high quality. The approach is validated in operational conditions with results presented for moving base scenario. The system was implemented in the SWIFT USV with the ROAZ autonomous surface vehicle acting as a moving base. This setup allows for the performing of a missions in a wider range of environments and applications such as precise 3D environment modeling in contained areas and multiple robot operations.
2016
Authors
Sousa, P; Ferreira, A; Moreira, M; Santos, T; Martins, A; Dias, A; Almeida, J; Silva, E;
Publication
2016 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC 2016)
Abstract
This paper presents the autononomous aerial vehicle OTUS and its application to search and rescue scenarios, namely the participation on the EuRathlon 2015 competition. The OTUS robot was developed at INESC TEC/ ISEP for research in cooperative aerial robotics and applications in complex and dynamic environments. The system was validated in this challenging scenario and was able to win the Grand Challenge scenario in cooperation with a land and marine robotics partner teams.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.