2023
Authors
Monica, P; Cruz, N; Almeida, JM; Silva, A; Silva, E; Pinho, C; Almeida, C; Viegas, D; Pessoa, LM; Lima, AP; Martins, A; Zabel, F; Ferreira, BM; Dias, I; Campos, R; Araujo, J; Coelho, LC; Jorge, PS; Mendes, J;
Publication
OCEANS 2023 - LIMERICK
Abstract
One way to mitigate the high costs of doing science or business at sea is to create technological infrastructures possessing all the skills and resources needed for successful maritime operations, and make those capabilities and skills available to the external entities requiring them. By doing so, the individual economic and scientific agents can be spared the enormous effort of creating and maintaining their own, particular set of equivalent capabilities, thus drastically lowering their initial operating costs. In addition to cost savings, operating based on fully-fledged, shared infrastructures not only allows the use of more advanced scientific equipment and highly skilled personnel, but it also enables the business teams (be it industry or research) to focus on their goals, rather than on equipment, logistics, and support. This paper will describe the TEC4SEA infrastructure, created precisely to operate as described. This infrastructure has been under implementation in the last few years, and has now entered its operational phase. This paper will describe it, present its current portfolio of services, and discuss the most relevant assets and facilities that have been recently acquired, so that the research and industrial communities requiring the use of such assets can fully evaluate their adequacy for their own purposes and projects.
2023
Authors
Martins, A; Almeida, J; Almeida, C; Matias, B; Ferreira, A; Machado, D; Ferreira, H; Pereira, R; Soares, E; Peixoto, PA; Silva, E;
Publication
OCEANS 2023 - LIMERICK
Abstract
This paper presents the TURTLE hybrid robotic lander in the context of the field trials performed in the REP(MUS) 2022 military exercise. The TURTLE robot combines the characteristics and mobility of an autonomous underwater vehicle with the ones of a seabed lander, having been designed for extended permanence on the sea bottom and efficient ascending and dive to the deep sea. The REP( MUS) 2022 exercises organized by the Portuguese navy in collaboration with NATO organizations and other institutions demonstrated the large-scale use of unmanned marine systems in an operational scenario. The robotic system is presented as well as some of the results and experience from the field trials.
2023
Authors
Oliveira, A; Dias, A; Santos, T; Rodrigues, P; Martins, A; Silva, E; Almeida, J;
Publication
OCEANS 2023 - LIMERICK
Abstract
Offshore wind farms are becoming the main alternative to fossil fuels and the future key to mitigating climate change by achieving energy sustainability. With favorable indicators in almost every environmental index, these structures operate under varying and dynamic environmental conditions, leading to efficiency losses and sudden failures. For these reasons, it's fundamental to promote the development of autonomous solutions to monitor the health condition of the construction parts, preventing structural damage and accidents. This paper introduces a new simulation environment for testing and training autonomous inspection techniques under a more realistic offshore wind farm scenario. Combining the Gazebo simulator with ROS, this framework can include multi-robots with different sensors to operate in a customizable simulation environment regarding some external elements (fog, wind, buoyancy...). The paper also presents a use case composed of a 3D LiDAR-based technique for autonomous wind turbine inspection with UAV, including point cloud clustering, model estimation, and the preliminary results under this simulation framework using a mixed environment (offshore simulation with a real UAV platform).
2023
Authors
Pires, A; Dias, A; Silva, P; Ferreira, A; Rodrigues, P; Santos, T; Oliveira, A; Freitas, L; Martins, A; Almeida, J; Silva, E; Chaminé, HI;
Publication
Arabian Journal of Geosciences
Abstract
2021
Authors
Amado, M; Lopes, F; Dias, A; Martins, A;
Publication
2021 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC)
Abstract
The detection and extraction of individual pylons and power lines from high-density point cloud (PC) LiDAR data are a relevant tool for evaluating the power lines utility corridors. Moreover, the presence of high vegetation and hilly terrain is a research challenger in the available methods. The paper presents a novel method for the extraction of pylons and power lines. Two steps compose the proposed approach: a pylon detection step based on top view projection, denoted by DFSS - Detect Filled Square Shapes, and a pylon arms detection step with the DPA Detect Pylon Arm algorithm. The results show that the proposed method could accurately and automatically extract pylons and the associated power lines, even if the dataset has low quality with downsampling, to reduce the processing time. Field tests were performed with a ground static LiDAR and a point cloud affected by downsampling voxel grid and Gaussian noise to simulate the expected LiDAR data from a UAV.
2020
Authors
Fernandez, RAS; Grande, D; Bascetta, L; Martins, A; Dominguez, S; Rossi, C;
Publication
2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS)
Abstract
This paper presents the results of the experimental tests performed to validate the functionality of a variable pitch system (VPS), designed for pitch attitude control of the novel underwater robotic vehicle explorer UX-1. The VPS is composed of a mass suspended from a central rod mounted across the hull. This mass is rotated around the transverse axis of the vehicle in order to perform a change in the inclination angle for navigation in vertical mine shafts. In this work, the equations of motion are first derived with a quaternion attitude representation, and are then extended to include the dynamics of the VPS. The performance of the VPS is demonstrated in real underwater experimental tests that validate the pitch angle control independently, and coupled with the heave motion control system.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.