Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Alfredo Martins

2016

Multiple robot operations for maritime search and rescue in euRathlon 2015 competition

Authors
Matos, A; Martins, A; Dias, A; Ferreira, B; Almeida, JM; Ferreira, H; Amaral, G; Figueiredo, A; Almeida, R; Silva, F;

Publication
OCEANS 2016 - SHANGHAI

Abstract
This paper presents results of the INESC TEC participation in the maritime environment (both at surface and underwater) integrated in the ICARUS team in the euRathlon 2015 robotics search and rescue competition. These relate to the marine robots from INESC TEC, surface (ROAZ USV) and underwater (MARES AUV) autonomous vehicles participation in multiple tasks such as situation assessment, underwater mapping, leak detection or victim localization. This participation was integrated in the ICARUS Team resulting of the EU funded project aimed to develop robotic tools for large scale disasters. The coordinated search and rescue missions were performed with an initial surface survey providing data for AUV mission planning and execution. A situation assessment bathymetry map, sidescan sonar imaging and location of structures, underwater leaks and victims were achieved, with the global ICARUS team (involving sea, air and land coordinated robots) participating in the final grand Challenge and achieving the second place.

2014

TEC4SEA-A Modular Platform for Research, Test and Validation of Technologies Supporting a Sustainable Blue Economy

Authors
Monica, P; Martins, A; Olivier, A; Matos, A; Almeida, JM; Cruz, N; Alves, JC; Salgado, H; Pessoa, L; Jorge, P; Campos, R; Ricardo, M; Pinho, C; Silva, A; Jesus, S; Silva, E;

Publication
2014 OCEANS - ST. JOHN'S

Abstract
This paper presents the TEC4SEA research infrastructure created in Portugal to support research, development, and validation of marine technologies. It is a multidisciplinary open platform, capable of supporting research, development, and test of marine robotics, telecommunications, and sensing technologies for monitoring and operating in the ocean environment. Due to the installed research facilities and its privileged geographic location, it allows fast access to deep sea, and can support multidisciplinary research, enabling full validation and evaluation of technological solutions designed for the ocean environment. It is a vertically integrated infrastructure, in the sense that it possesses a set of skills and resources which range from pure conceptual research to field deployment missions, with strong industrial and logistic capacities in the middle tier of prototype production. TEC4SEA is open to the entire scientific and enterprise community, with a free access policy for researchers affiliated with the research units that ensure its maintenance and sustainability. The paper describes the infrastructure in detail, and discusses associated research programs, providing a strategic vision for deep sea research initiatives, within the context of both the Portuguese National Ocean Strategy and European Strategy frameworks.

2016

TURTLE - A robotic autonomous deep sea lander

Authors
Silva, E; Martins, A; Almeida, JM; Ferreira, H; Valente, A; Camilo, M; Figueiredo, A; Pinheiro, C;

Publication
OCEANS 2016 MTS/IEEE MONTEREY

Abstract
This paper presents a new concept for a deep sea lander system combining both sea bottom permanence characteristics with autonomous repositioning functionalities and efficient ascent/descent motion in the water column. The TURTLE hybrid lander is a particular type of autonomous underwater vehicle designed to act as sea bottom fixed observation node or in operations of transport equipment to the deep sea. The paper discusses the general concept of operation and applications and also presents the developed prototype. This system was developed under a dual use EDA (European Defense Agency) project and with national and European funds. Considered as one of the dual use (civil and military) success stories, the demonstrator was equipped to sensors allowing both seismographic data gathering and acoustic monitoring applications.

2013

Ball sensing in a leg like robotic kicker

Authors
Logghe, J; Dias, A; Almeida, J; Martins, A; Silva, E;

Publication
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Abstract
The trend to have more cooperative play and the increase of game dynamics in Robocup MSL League motivates the improvement of skills for ball passing and reception. Currently the majority of the MSL teams uses ball handling devices with rollers to have more precise kicks but limiting the capability to kick a moving ball without stopping it and grabbing it. This paper addresses the problem to receive and kick a fast moving ball without having to grab it with a roller based ball handling device. Here, the main difficulty is the high latency and low rate of the measurements of the ball sensing systems, based in vision or laser scanner sensors.Our robots use a geared leg coupled to a motor that acts simultaneously as the kicking device and low level ball sensor. This paper proposes a new method to improve the capability for ball sensing in the kicker, by combining high rate measurements from the torque and energy in the motor and angular position of the kicker leg. The developed method endows the kicker device with an effective ball detection ability, validated in several game situations like in an interception to a fast pass or when chasing the ball where the relative speed from robot to ball is low. This can be used to optimize the kick instant or by the embedded kicker control system to absorb the ball energy. © 2013 Springer-Verlag.

2013

Development of an Unmanned Capsule for LargeScale Maritime Search and Rescue

Authors
Matos, A; Silva, E; Cruz, N; Alves, JC; Almeida, D; Pinto, M; Martins, A; Almeida, J; Machado, D;

Publication
2013 OCEANS - SAN DIEGO

Abstract
This paper describes the development and testing of a robotic capsule for search and rescue operations at sea. This capsule is able to operate autonomously or remotely controlled, is transported and deployed by a larger USV into a determined disaster area and is used to carry a life raft and inflate it close to survivors in large-scale maritime disasters. The ultimate goal of this development is to endow search and rescue teams with tools that extend their operational capability in scenarios with adverse atmospheric or maritime conditions.

2013

Distributed Active Traction Control System Applied to the RoboCup Middle Size League

Authors
Almeida, J; Dias, A; Martins, A; Sequeira, J; Silva, E;

Publication
INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS

Abstract
This work addresses the problem of traction control in mobile wheeled robots in the particular case of the RoboCup Middle Size League (MSL). The slip control problem is formulated using simple friction models for ISePorto Team Robots with a differential wheel configuration. Traction was also characterized experimentally in the MSL scenario for relevant game events. This work proposes a hierarchical traction control architecture which relies on local slip detection and control at each wheel, with relevant information being relayed to a higher level responsible for global robot motion control. A dedicated one axis control embedded hardware subsystem allowing complex local control, high frequency current sensing and odometric information procession was developed. This local axis control board is integrated in a distributed system using CAN bus communications. The slipping observer was implemented in the axis control hardware nodes integrated in the ISePorto Robots and was used to control and detect loss of traction. An external vision system was used to perform a qualitative analysis of the slip detection and observer performance results are presented.

  • 2
  • 20