Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Clara Sofia Gouveia

2013

Coordinating Storage and Demand Response for Microgrid Emergency Operation

Authors
Gouveia, C; Moreira, J; Moreira, CL; Pecas Lopes, JAP;

Publication
IEEE TRANSACTIONS ON SMART GRID

Abstract
Microgrids are assumed to be established at the low voltage distribution level, where distributed energy sources, storage devices, controllable loads and electric vehicles are integrated in the system and need to be properly managed. The microgrid system is a flexible cell that can be operated connected to the main power network or autonomously, in a controlled and coordinated way. The use of storage devices in microgrids is related to the provision of some form of energy buffering during autonomous operating conditions, in order to balance load and generation. However, frequency variations and limited storage capacity might compromise microgrid autonomous operation. In order to improve microgrid resilience in the moments subsequent to islanding, this paper presents innovative functionalities to run online, which are able to manage microgrid storage considering the integration of electric vehicles and load responsiveness. The effectiveness of the proposed algorithms is validated through extensive numerical simulations.

2014

Electric Vehicles Charging Management and Control Strategies

Authors
Soares, FJ; Rua, D; Gouveia, C; Pecas Lopes, JAP;

Publication
2014 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC)

Abstract
This paper presents a holistic framework for electric vehicles integration in electric power systems together with their charging management and control methodologies that allow minimizing the negative impacts in the grid of the charging process and maximize the benefits that charging controllability may bring to their owners, energy retailers and system operators. The performance of these management and control methods will be assessed through steady state computational simulations and then validated in a microgrid laboratory environment.

2014

Impacts of plug-in electric vehicles integration in distribution networks under different charging strategies

Authors
Soares, FJ; Barbeiro, PN; Gouveia, C; Lopes, JAP;

Publication
Power Systems

Abstract
The uncertainties related to when and where Plug-in Electric Vehicles (PEVs) will charge in the future requires the development of stochastic based approaches to identify the corresponding load scenarios. Such tools can be used to enhance existing system operators planning techniques, allowing them to obtain additional knowledge on the impacts of a new type of load, so far unknown or negligible to the power systems, the PEVs battery charging. This chapter presents a tool developed to evaluate the steady state impacts of integrating PEVs in distribution networks. It incorporates several PEV models, allowing estimating their charging impacts in a given network, during a predefined period, when different charging strategies are adopted (non-controlled charging, multiple tariff policies and controlled charging). It uses a stochastic model to simulate PEVs movement in a geographic region and a Monte Carlo method to create different scenarios of PEVs charging. It allows calculating the maximum number of PEVs that can be safely integrated in a given network and the changes provoked by PEVs in the load diagrams, voltage profiles, lines loading and energy losses. Additionally, the tool can also be used to quantify the critical mass (percentage) of PEV owners that need to adhere to controlled charging schemes in order to enable the safe operation of distribution networks. © Springer Science+Business Media Singapore 2015.

2013

INESC Porto Experimental SMART GRID: Enabling the Deployment of EV and DER

Authors
Gouveia, C; Rua, D; Ribeiro, F; Moreira, CL; Pecas Lopes, JAP;

Publication
2013 IEEE GRENOBLE POWERTECH (POWERTECH)

Abstract
The feasibility of the MicroGrid (MG) concept, as the pathway for integrating Electric Vehicles (EV) and other Distributed energy Resources (DER), has been the focus of several research projects around the world. However, developments have been mainly demonstrated through numerical simulation. Regarding effective smart grid deployment, strong effort is required in demonstration activities, addressing the feasibility of innovative control solutions and the need of specific communication requirements. Therefore, the main objective of this paper is to provide an integrated overview of the laboratorial infrastructure under development at INESC Porto, where it will be possible to conceptualize, implement and test the performance of new control and management concepts for Smart Grid cells. The laboratorial infrastructure integrates two experimental MG, including advanced prototypes for power conditioning units to be used in micro generation applications, batteries for energy storage and a fully controlled bidirectional power converter. Preliminary experimental results and organization of the infrastructure are presented.

2017

MicroGrid Energy Balance Management for Emergency Operation

Authors
Gouveia, J; Gouveia, C; Rodrigues, J; Bessa, R; Madureira, AG; Pinto, R; Moreira, CL; Lopes, JAP;

Publication
2017 IEEE MANCHESTER POWERTECH

Abstract
A distinctive characteristic of a Microgrid (MG) system is related to the ability of operating autonomously. However, the stability of the system relies in storage and generation availability, providing frequency and voltage regulation. Considering the deployment of distributed storage units in the Low Voltage network and of smart metering infrastructures, this paper presents an online tool for promoting an effective coordination of MG flexible resources in order ensure a secure autonomous operation and maximize the time that the MG is able to operate islanded from the main grid. The tool determines a priori an emergency operation plan for the next hours, based on load and microgeneration forecasting. The limited energy capacity of the distributed storage units participating in MG control is also considered.

2013

Microgrid Service Restoration The Role of Plugged-In Electric Vehicles

Authors
Gouveia, C; Moreira, CL; Pecas Lopes, JAP; Varajao, D; Araujo, RE;

Publication
IEEE INDUSTRIAL ELECTRONICS MAGAZINE

Abstract
The development of the microgrid (MG) concept endows distribution networks with increased reliability and resilience and offers an adequate management and control solution for massive deployment of microgeneration and electric vehicles (EVs). Within an MG, local generation can be exploited to launch a local restoration procedure following a blackout. EVs are flexible resources that can also be actively included in the restoration procedure, thus contributing to the improvement of MG operating conditions. The feasibility of MG service restoration, including the active participation of EVs, is demonstrated in this article through extensive numerical simulation and experimentation in a laboratorial setup. © 2007-2011 IEEE.

  • 2
  • 9