2024
Authors
da Silva, DQ; Louro, F; dos Santos, FN; Filipe, V; Sousa, AJ; Cunha, M; Carvalho, JL;
Publication
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE, VOL 2
Abstract
Forest soil ripping is a practice that involves revolving the soil in a forest area to prepare it for planting or sowing operations. Advanced sensing systems may help in this kind of forestry operation to assure ideal ripping depth and intensity, as these are important aspects that have potential to minimise the environmental impact of forest soil ripping. In this work, a cost-effective contactless system - capable of detecting and mapping soil ripping depth in real-time - was developed and tested in laboratory and in a realistic forest scenario. The proposed system integrates two single-point LiDARs and a GNSS sensor. To evaluate the system, ground-truth data was manually collected on the field during the operation of the machine with a ripping implement. The proposed solution was tested in real conditions, and the results showed that the ripping depth was estimated with minimal error. The accuracy and mapping ripping depth ability of the low-cost sensor justify their use to support improved soil preparation with machines or robots toward sustainable forest industry.
2024
Authors
Baltazar, A; Santos, FN; Moreira, AP; Soares, SP; Reis, MJCS; Cunha, JB;
Publication
2024 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC
Abstract
Precision spraying in agriculture is crucial for optimizing the application of pesticides while minimizing environmental impact. Despite significant advancements in control models for spraying systems, predictive control algorithms were not used. This paper addresses this gap by proposing a real-time control framework that integrates predictive control strategies to ensure consistent pressure output in a trailer sprayer. Based on information from various sensors, the framework anticipates and adapts to dynamic environmental conditions, enhancing accuracy and sustainability in spraying practices. A methodology is developed to define a proportional valve model. Based on this valve model, the predictive control model optimizes valve movements to minimize errors between predicted and reference pressures, thereby improving spraying efficiency. This study demonstrates the viability of predictive control in improving precision spraying systems applicable to autonomous robots, encouraging future advances in agricultural spraying technologies.
2024
Authors
Moreira, T; Santos, FN; Santos, L; Sarmento, J; Terra, F; Sousa, A;
Publication
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE, VOL 2
Abstract
Climate change, limited natural resources, and the increase in the world's population impose society to produce food more sustainably, with lower energy and water consumption. The use of robots in agriculture is one of the most promising solutions to change the paradigm of agricultural practices. Agricultural robots should be seen as a way to make jobs easier and lighter, and also a way for people who do not have agricultural skills to produce their food. The PixelCropRobot is a low-cost, open-source robot that can perform the processes of monitoring and watering plants in small gardens. This work proposes a mission supervisor for PixelCropRobot, and general agricultural robots, and presents a prototype of user interface to this mission supervision. The communication between the mission supervisor and the other components of the system is done using ROS2 and MQTT, and mission file standardized. The mission supervisor receives a prescription map, with information about the respective mission, and decomposes them into simple tasks. An A* algorithm then defines the priority of each mission that depends on factors like water requirements, and distance travelled. This concept of mission supervisor was deployed into the PixelCropRobot and was validated in real conditions, showing a enormous potential to be extended to other agricultural robots.
2024
Authors
Deguchi, T; Baltazar, AR; dos Santos, FN; Mendonça, H;
Publication
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE, VOL 2
Abstract
Since the advent of agriculture, humans have considered phytopharmaceutical products to control pests and reduce losses in farming. Sometimes some of these products, such pesticides, can potentially harm the soil life. In the literature there is evidence that AI and image processing can have a positive contribution to reduce phytopharmaceutical losses, when used in variable rate sprayers. However, it is possible to improve the existing sprayer system's precision, accuracy, and mechanical aspects. This work proposes spraying solution called GraDeS solution (Grape Detection Sprayer). GraDeS solution is a sprayer with two degrees of freedom, controlled by a AI-based algorithm to precisely treat grape bunches diseases. The experiments with the designed sprayer showed two key points. First, the deep learning algorithm recognized and tracked grape bunches. Even with structure movement and bunch covering, the algorithm employs several strategies to keep track of the discovered objects. Second, the robotic sprayer can improve precision in specified areas, such as exclusively spraying grape bunches. Because of the structure's reduced size, the system can be used in medium and small robots.
2024
Authors
Martins, RC; Queirós, C; Silva, FM; Santos, F; Barroso, TG; Tosin, R; Cunha, M; Leao, M; Damásio, M; Martins, P; Silvestre, J;
Publication
BIOSYSTEMS ENGINEERING
Abstract
Data scarcity is a hurdle for physiology-based precision agriculture. Measuring nutrient uptake by visible-near infrared spectroscopy implies collecting spectral and compositional data from low-throughput, such as inductively coupled plasma optical emission spectroscopy. This paper introduces data augmentation in spectroscopy by hybridisation for expanding real-world data into synthetic datasets statistically representative of the real data, allowing the quantification of macronutrients (N, P, K, Ca, Mg, and S) and micronutrients (Fe, Mn, Zn, Cu, and B). Partial least squares (PLS), local partial least squares (LocPLS), and self-learning artificial intelligence (SLAI) were used to determine the capacity to expand the knowledge base. PLS using only real-world data (RWD) cannot quantify some nutrients (N and Cu in grapevine leaves and K, Ca, Mg, S, and Cu in apple tree leaves). The synthetic dataset of the study allowed predicting real-world leaf composition of macronutrients (N, P, K, Ca, Mg and S) (Pearson coefficient correlation (R) 0.61-0.94 and standard error (SE) 0.04-0.05%) and micronutrients (Fe, Mn, Zn, Cu and B) (R 0.66-0.91 and SE 0.88-3.98 ppm) in grapevine leaves using LocPLS and SLAI. The synthetic dataset loses significance if the real-world counterpart has low representativity, resulting in poor quantifications of macronutrients (R 0.51-0.72 and SE 0.02-0.13%) and micronutrients (R 0.53-0.76 and SE 8.89-37.89 ppm), and not allowing S quantification (R = 0.37, SE = 0.01) in apple tree leaves. Representative real-world sampling makes data augmentation in spectroscopy very efficient in expanding the knowledge base and nutrient quantifications.
2024
Authors
Tosin, R; Portis, I; Rodrigues, L; Gonçalves, I; Barbosa, C; Teixeira, J; Mendes, RJ; Santos, F; Santos, C; Martins, R; Cunha, M;
Publication
HORTICULTURAE
Abstract
This study investigates how grapevines (Vitis vinifera L.) respond to shading induced by artificial nets, focusing on physiological and metabolic changes. Through a multidisciplinary approach, grapevines' adaptations to shading are presented via biochemical analyses and hyperspectral data that are then combined with systems biology techniques. In the study, conducted in a 'Moscatel Galego Branco' vineyard in Portugal's Douro Wine Region during post-veraison, shading was applied and predawn leaf water potential (Psi pd) was then measured to assess water stress. Biochemical analyses and hyperspectral data were integrated to explore adaptations to shading, revealing higher chlorophyll levels (chlorophyll a-b 117.39% higher) and increased Reactive Oxygen Species (ROS) levels in unshaded vines (52.10% higher). Using a self-learning artificial intelligence algorithm (SL-AI), simulations highlighted ROS's role in stress response and accurately predicted chlorophyll a (R2: 0.92, MAPE: 24.39%), chlorophyll b (R2: 0.96, MAPE: 17.61%), and ROS levels (R2: 0.76, MAPE: 52.17%). In silico simulations employing flux balance analysis (FBA) elucidated distinct metabolic phenotypes between shaded and unshaded vines across cellular compartments. Integrating these findings provides a systems biology approach for understanding grapevine responses to environmental stressors. The leveraging of advanced omics technologies and precise metabolic models holds immense potential for untangling grapevine metabolism and optimizing viticultural practices for enhanced productivity and quality.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.