2024
Authors
da Silva, DQ; Dos Santos, FN; Filipe, V; Sousa, AJ; Pires, EJS;
Publication
IEEE ACCESS
Abstract
Stand-level forest tree species perception and identification are needed for monitoring-related operations, being crucial for better biodiversity and inventory management in forested areas. This paper contributes to this knowledge domain by researching tree trunk types multispectral perception at stand-level. YOLOv5 and YOLOv8 - Convolutional Neural Networks specialized at object detection and segmentation - were trained to detect and segment two tree trunk genus (pine and eucalyptus) using datasets collected in a forest region in Portugal. The dataset comprises only two categories, which correspond to the two tree genus. The datasets were manually annotated for object detection and segmentation with RGB and RGB-NIR images, and are publicly available. The Small variant of YOLOv8 was the best model at detection and segmentation tasks, achieving an F1 measure above 87% and 62%, respectively. The findings of this study suggest that the use of extended spectra, including Visible and Near Infrared, produces superior results. The trained models can be integrated into forest tractors and robots to monitor forest genus across different spectra. This can assist forest managers in controlling their forest stands.
2024
Authors
Magalhaes, SAC; dos Santos, FN; Moreira, AP; Dias, JMM;
Publication
ROBOTICA
Abstract
Performing tasks in agriculture, such as fruit monitoring or harvesting, requires perceiving the objects' spatial position. RGB-D cameras are limited under open-field environments due to lightning interferences. So, in this study, we state to answer the research question: How can we use and control monocular sensors to perceive objects' position in the 3D task space? Towards this aim, we approached histogram filters (Bayesian discrete filters) to estimate the position of tomatoes in the tomato plant through the algorithm MonoVisual3DFilter. Two kernel filters were studied: the square kernel and the Gaussian kernel. The implemented algorithm was essayed in simulation, with and without Gaussian noise and random noise, and in a testbed at laboratory conditions. The algorithm reported a mean absolute error lower than 10 mm in simulation and 20 mm in the testbed at laboratory conditions with an assessing distance of about 0.5 m. So, the results are viable for real environments and should be improved at closer distances.
2024
Authors
Costa, A; Pereira, A; Pinho, L; Gregório, H; Santos, F; Moura, P; Marcos, R; Martins, RC;
Publication
The 4th International Electronic Conference on Biosensors
Abstract
2024
Authors
Pinheiro, I; Moreira, G; Magalhaes, S; Valente, A; Cunha, M; dos Santos, FN;
Publication
SCIENTIFIC REPORTS
Abstract
Pollination is critical for crop development, especially those essential for subsistence. This study addresses the pollination challenges faced by Actinidia, a dioecious plant characterized by female and male flowers on separate plants. Despite the high protein content of pollen, the absence of nectar in kiwifruit flowers poses difficulties in attracting pollinators. Consequently, there is a growing interest in using artificial intelligence and robotic solutions to enable pollination even in unfavourable conditions. These robotic solutions must be able to accurately detect flowers and discern their genders for precise pollination operations. Specifically, upon identifying female Actinidia flowers, the robotic system should approach the stigma to release pollen, while male Actinidia flowers should target the anthers to collect pollen. We identified two primary research gaps: (1) the lack of gender-based flower detection methods and (2) the underutilisation of contemporary deep learning models in this domain. To address these gaps, we evaluated the performance of four pretrained models (YOLOv8, YOLOv5, RT-DETR and DETR) in detecting and determining the gender of Actinidia flowers. We outlined a comprehensive methodology and developed a dataset of manually annotated flowers categorized into two classes based on gender. Our evaluation utilised k-fold cross-validation to rigorously test model performance across diverse subsets of the dataset, addressing the limitations of conventional data splitting methods. DETR provided the most balanced overall performance, achieving precision, recall, F1 score and mAP of 89%, 97%, 93% and 94%, respectively, highlighting its robustness in managing complex detection tasks under varying conditions. These findings underscore the potential of deep learning models for effective gender-specific detection of Actinidia flowers, paving the way for advanced robotic pollination systems.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.