Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Hugo Alexandre Ferreira

2009

Radar Based Collision detection developments on USV ROAZ II

Authors
Almeida, C; Franco, T; Ferreira, H; Martins, A; Santos, R; Almeida, JM; Carvalho, J; Silva, E;

Publication
OCEANS 2009 - EUROPE, VOLS 1 AND 2

Abstract
This work presents the integration of obstacle detection and analysis capabilities in a coherent and advanced C&C framework allowing mixed-mode control in unmanned surface systems. The collision avoidance work has been successfully integrated in an operational autonomous surface vehicle and demonstrated in real operational conditions. We present the collision avoidance system, the ROAZ autonomous surface vehicle and the results obtained at sea tests. Limitations of current COTS radar systems are also discussed and further research directions are proposed towards the development and integration of advanced collision avoidance systems taking in account the different requirements in unmanned surface vehicles

2009

Autonomous Bathymetry for Risk Assessment with ROAZ Robotic Surface Vehicle

Authors
Ferreira, H; Almeida, C; Martins, A; Almeida, J; Dias, N; Dias, A; Silva, E;

Publication
OCEANS 2009 - EUROPE, VOLS 1 AND 2

Abstract
The use of unmanned marine robotic vehicles in bathymetric surveys is discussed. This paper presents recent results in autonomous bathymetric missions with the ROAZ autonomous surface vehicle. In particular, robotic surface vehicles such as ROAZ provide an efficient tool in risk assessment for shallow water environments and water land interface zones as the near surf zone in marine coast. ROAZ is an ocean capable catamaran for distinct oceanographic missions, and with the goal to fill the gap were other hydrographic surveys vehicles/systems are not compiled to operate, like very shallow water rivers and marine coastline surf zones. Therefore, the use of robotic systems for risk assessment is validated through several missions performed either in river scenario (in a very shallow water conditions) and in marine coastlines.

2007

SWORDFISH: an autonomous surface vehicle for network centric operations

Authors
Ferreira, H; Martins, R; Marques, E; Pinto, J; Martins, A; Almeida, J; Sousa, J; Silva, EP;

Publication
OCEANS 2007 - EUROPE, VOLS 1-3

Abstract
The design and development of the Swordfish Autonomous Surface Vehicle (ASV) system is discussed. Swordfish is an ocean capable 4.5m long catamaran designed for network centric operations (with ocean and air going vehicles and human operators). In the basic configuration, Swordfish is both a survey vehicle and a communications node with gateways for broadband, Wi-Fi and GSM transports and underwater acoustic modems. In another configuration, Swordfish mounts a docking station for the autonomous underwater vehicle Isurus from Porto University. Swordfish has an advanced control architecture for multi-vehicle operations with mixed initiative interactions (human operators are allowed to interact with the control loops).

2023

TURTLE Robotic Lander in the context of REP2022 military exercise

Authors
Martins, A; Almeida, J; Almeida, C; Matias, B; Ferreira, A; Machado, D; Ferreira, H; Pereira, R; Soares, E; Peixoto, PA; Silva, E;

Publication
OCEANS 2023 - LIMERICK

Abstract
This paper presents the TURTLE hybrid robotic lander in the context of the field trials performed in the REP(MUS) 2022 military exercise. The TURTLE robot combines the characteristics and mobility of an autonomous underwater vehicle with the ones of a seabed lander, having been designed for extended permanence on the sea bottom and efficient ascending and dive to the deep sea. The REP( MUS) 2022 exercises organized by the Portuguese navy in collaboration with NATO organizations and other institutions demonstrated the large-scale use of unmanned marine systems in an operational scenario. The robotic system is presented as well as some of the results and experience from the field trials.

  • 5
  • 5