Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by André Dias

2020

Teaching Robotics with a Simulator Environment Developed for the Autonomous Driving Competition

Authors
Fernandes, D; Pinheiro, F; Dias, A; Martins, A; Almeida, J; Silva, E;

Publication
ROBOTICS IN EDUCATION: CURRENT RESEARCH AND INNOVATIONS

Abstract
Teaching robotics based on challenge of our daily lives is always more motivating for students and teachers. Several competitions of self-driving have emerged recently, challenging students and researchers to develop solutions addressing the autonomous driving systems. The Portuguese Festival Nacional de Rob ' otica (FNR) Autonomous Driving Competition is one of those examples. Even though the competition is an exciting challenger, it requires the development of real robots, which implies several limitations that may discourage the students and compromise a fluid teaching process. The simulation can contribute to overcome this limitation and can assume an important role as a tool, providing an effortless and costless solution, allowing students and researchers to keep their focus on the main issues. This paper presents a simulation environment for FNR, providing an overall framework able to support the exploration of robotics topics like perception, navigation, data fusion and deep learning based on the autonomous driving competition.

2019

Design and Development of a multi rotor UAV for Oil Spill Mitigation

Authors
Oliveira, A; Pedrosa, D; Santos, T; Dias, A; Amaral, G; Martins, A; Almeida, J; Silva, E;

Publication
OCEANS 2019 - MARSEILLE

Abstract
Over the last few years, oil spill incidents occured with some regularity during exploration, production and transportation, causing a large economic and ecologic impact in the world community. To minimise these impacts and reduce the time response of the initial mitigation process, autonomous vehicles, such as unmanned aerial vehicles (UAV) can be used to perform oil spill monitoring and mitigation. This paper presents the design and implementation of a multirotor UAV capable of identifying and combat the oil spill, by using a release system of consortia with bacteria and nutrients. Several field tests occurred in Portugal and Spain, where the oil spill was implemented in a simulated environment, resulting in a cooperative and simultaneous manoeuvre between the vehicles.

2019

ROSM - Robotic Oil Spill Mitigation

Authors
Dias, A; Mucha, AP; Santos, T; Pedrosa, D; Amaral, G; Ferreira, H; Oliveira, A; Martins, A; Almeida, J; Almeida, CM; Ramos, S; Magalhaes, C; Carvalho, MF; Silva, E;

Publication
OCEANS 2019 - MARSEILLE

Abstract
The overall aim of the ROSM project is the implementation of an innovative solution based on heterogeneous autonomous vehicles to tackle maritime pollution (in particular, oil spills). These solutions will be based on native microbial consortia with bioremediation capacity, and the adaptation of air and surface autonomous vehicles for in-situ release of autochthonous microorganisms (bioaugmentation) and nutrients (biostimulation). By doing so, these systems can be used as the first line of the responder to pollution incidents from several origins that may occur inside ports, around industrial and extraction facilities, or during transport activities, in a fast, efficient and low-cost way. The paper will address the development of a team of autonomous vehicles able to carry, as payload, native organisms to naturally degrade oil spills (avoiding the introduction of additional chemical or biological additives), the development of a multi-robot system able to provide a first line responses to oil spill incidents under unfavourable and harsh conditions with low human intervention, and then a decentralized cooperative planning with the ability to coordinate an efficient oil spill combat. Field tests have been performed in Leixoes Harbour in Porto and Medas, Portugal, with a simulated oil spill and validated the decentralized coordinated task between the autonomous surface vehicle (ASV) ROAZ and the unmanned aerial vehicle (UAV).

2021

Emergency Landing Spot Detection Algorithm for Unmanned Aerial Vehicles

Authors
Loureiro, G; Dias, A; Martins, A; Almeida, J;

Publication
REMOTE SENSING

Abstract
The use and research of Unmanned Aerial Vehicle (UAV) have been increasing over the years due to the applicability in several operations such as search and rescue, delivery, surveillance, and others. Considering the increased presence of these vehicles in the airspace, it becomes necessary to reflect on the safety issues or failures that the UAVs may have and the appropriate action. Moreover, in many missions, the vehicle will not return to its original location. If it fails to arrive at the landing spot, it needs to have the onboard capability to estimate the best area to safely land. This paper addresses the scenario of detecting a safe landing spot during operation. The algorithm classifies the incoming Light Detection and Ranging (LiDAR) data and store the location of suitable areas. The developed method analyses geometric features on point cloud data and detects potential right spots. The algorithm uses the Principal Component Analysis (PCA) to find planes in point cloud clusters. The areas that have a slope less than a threshold are considered potential landing spots. These spots are evaluated regarding ground and vehicle conditions such as the distance to the UAV, the presence of obstacles, the area's roughness, and the spot's slope. Finally, the output of the algorithm is the optimum spot to land and can vary during operation. The proposed approach evaluates the algorithm in simulated scenarios and an experimental dataset presenting suitability to be applied in real-time operations.

2020

Survey of approaches for emergency landing spot detection with unmanned aerial vehicles

Authors
Loureiro, G; Dias, A; Martins, A;

Publication
Robots in Human Life- Proceedings of the 23rd International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, CLAWAR 2020

Abstract
For the past years, the interest in the use of Unmanned Aerial Vehicles (UAVs) has been increasing due to the multiple research topics provided by the field of aerial robotics. Conversely, vehicles are susceptible to failures or malfunctions. Consequently, one main emergent research topic is the detection of a safe landing spot in these emergency scenarios. Therefore, this paper exposes and details the multiple techniques that attempt to solve the problem of landing site detection. This paper aims to present the current literature with several sensors that can be used to solve the aforementioned problem. Finally, the paper presents our proposed approach with some preliminary results in simulation. © CLAWAR Association Ltd.

2020

Emergency Landing Spot Detection for Unmanned Aerial Vehicle

Authors
Loureiro, G; Soares, L; Dias, A; Martins, A;

Publication
FOURTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, ROBOT 2019, VOL 2

Abstract
This paper addresses the topic of emergency landing spot detection for Unmanned Aerial Vehicles (UAVs). During operation, the vehicle is susceptible to faults and must be able to predict the land spot able to ensure that the UAV will be able to land without damages and injuries to humans and structures. A method was developed, based on geometric features extracted from Light Detection And Ranging (LIDAR) data. A simulation environment was developed in order to validate the effectiveness and the robustness of the proposed method.

  • 8
  • 11