2011
Authors
Garis, AG; Cunha, A; Riesco, D;
Publication
Software Engineering and Formal Methods - 9th International Conference, SEFM 2011, Montevideo, Uruguay, November 14-18, 2011. Proceedings
Abstract
Model-Driven Engineering (MDE) is a Software Engineering approach based on model transformations at different abstraction levels. It prescribes the development of software by successively transforming models from abstract (specifications) to more concrete ones (code). Alloy is an increasingly popular lightweight formal specification language that supports automatic verification. Unfortunately, its widespread industrial adoption is hampered by the lack of an ecosystem of MDE tools, namely code generators. This paper presents a model transformation between Alloy and UML Class Diagrams annotated with OCL. The proposed transformation enables current UML-based tools to also be applied to Alloy specifications, thus unleashing its potential for MDE. © 2011 Springer-Verlag.
2011
Authors
Cunha, A; Pacheco, H;
Publication
Electr. Notes Theor. Comput. Sci.
Abstract
Defining functions over large, possibly recursive, data structures usually involves a lot of boilerplate. This code simply traverses non-interesting parts of the data, and rapidly becomes a maintainability problem. Many generic programming libraries have been proposed to address this issue. Most of them allow the user to specify the behavior just for the interesting bits of the structure, and provide traversal combinators to "scrap the boilerplate". The expressive power of these libraries usually comes at the cost of efficiency, since runtime checks are used to detect where to apply the type-specific behavior. In previous work we have developed an effective rewrite system for specialization and optimization of generic programs. In this paper we extend it to also cover recursive data types. The key idea is to specialize traversal combinators using well-known recursion patterns, such as folds or paramorphisms. These are ruled by a rich set of algebraic laws that enable aggressive optimizations. We present a type-safe encoding of this rewrite system in Haskell, based on recent language extensions such as type-indexed type families.
2011
Authors
Pacheco, H; Cunha, A;
Publication
Proceedings of the 2011 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation, PEPM 2011, Austin, TX, USA, January 24-25, 2011
Abstract
This paper presents an equational calculus to reason about bidirectional transformations specified in the point-free style. In particular, it focuses on the so-called lenses as a bidirectional idiom, and shows that many standard laws characterising point-free combinators and recursion patterns are also valid in that setting. A key result is that uniqueness also holds for bidirectional folds and unfolds, thus unleashing the power of fusion as a program optimisation technique. A rewriting system for automatic lens optimisation is also presented, to prove the usefulness of the proposed calculus. © 2011 ACM.
2007
Authors
Cunha, A; Visser, J;
Publication
Proceedings of the 2007 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-based Program Manipulation, 2007, Nice, France, January 15-16, 2007
Abstract
Various programming languages allow the construction of structure-shy programs. Such programs are defined generically for many different datatypes and only specify specific behavior for a few relevant subtypes. Typical examples are XML query languages that allow selection of subdocuments without exhaustively specifying intermediate element tags. Other examples are languages and libraries for polytypic or strategic functional programming and for adaptive object-oriented programming. In this paper, we present an algebraic approach to transformation of declarative structure-shy programs, in particular for strategic functions and XML queries. We formulate a rich set of algebraic laws, not just for transformation of structure-shy programs, but also for their conversion into structure-sensitive programs and vice versa. We show how subsets of these laws can be used to construct effective rewrite systems for specialization, generalization, and optimization of structure-shy programs. We present a type-safe encoding of these rewrite systems in Haskell which itself uses strategic functional programming techniques. Copyright © 2007 ACM.
2007
Authors
Cunha, A; Visser, J;
Publication
Electr. Notes Theor. Comput. Sci.
Abstract
Coupled transformations occur in software evolution when multiple artifacts must be modified in such a way that they remain consistent with each other. An important example involves the coupled transformation of a data type, its instances, and the programs that consume or produce it. Previously, we have provided a formal treatment of transformation of the first two: data types and instances. The treatment involved the construction of type-safe, type-changing strategic rewrite systems. In this paper, we extend our treatment to the transformation of corresponding data processing programs. The key insight underlying the extension is that both data migration functions and data processors can be represented type-safely by a generalized abstract data type (GADT). These representations are then subjected to program calculation rules, harnessed in type-safe, type-preserving strategic rewrite systems. For ease of calculation, we use point-free representations and corresponding calculation rules. Thus, coupled transformations are carried out in two steps. First, a type-changing rewrite system is applied to a source type to obtain a target type together with (representations of) migration functions between source and target. Then, a type-preserving rewrite system is applied to the composition of a migration function and a data processor on the source (or target) type to obtain a data processor on the target (or source) type. All rewrites are type-safe.
2003
Authors
Cunha, A;
Publication
Electr. Notes Theor. Comput. Sci.
Abstract
Although the principles behind generic programming are already well understood, this style of programming is not widespread and examples of applications are rarely found in the literature. This paper addresses this shortage by presenting a new method, based on generic programming, to automatically visualize recursion trees of functions written in Haskell. Crucial to our solution is the fact that almost any function definition can be automatically factorized into the composition of a fold after an unfold of some intermediate data structure that models its recursion tree. By combining this technique with an existing tool for graphical debugging, and by extensively using Generic Haskell, we achieve a rather concise and elegant solution to this problem. © 2003 Published by Elsevier Science B.V.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.