Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

Publications by Vítor Francisco Fonte

2015

Concise Server-Wide Causality Management for Eventually Consistent Data Stores

Authors
Gonçalves, R; Almeida, PS; Baquero, C; Fonte, V;

Publication
Distributed Applications and Interoperable Systems - 15th IFIP WG 6.1 International Conference, DAIS 2015, Held as Part of the 10th International Federated Conference on Distributed Computing Techniques, DisCoTec 2015, Grenoble, France, June 2-4, 2015, Proceedings

Abstract
Large scale distributed data stores rely on optimistic replication to scale and remain highly available in the face of network partitions. Managing data without coordination results in eventually consistent data stores that allow for concurrent data updates. These systems often use anti-entropy mechanisms (like Merkle Trees) to detect and repair divergent data versions across nodes. However, in practice hash-based data structures are too expensive for large amounts of data and create too many false conflicts. Another aspect of eventual consistency is detecting write conflicts. Logical clocks are often used to track data causality, necessary to detect causally concurrent writes on the same key. However, there is a nonnegligible metadata overhead per key, which also keeps growing with time, proportional with the node churn rate. Another challenge is deleting keys while respecting causality: while the values can be deleted, perkey metadata cannot be permanently removed without coordination. We introduce a new causality management framework for eventually consistent data stores, that leverages node logical clocks (Bitmapped Version Vectors) and a new key logical clock (Dotted Causal Container) to provides advantages on multiple fronts: 1) a new efficient and lightweight anti-entropy mechanism; 2) greatly reduced per-key causality metadata size; 3) accurate key deletes without permanent metadata. © IFIP International Federation for Information Processing 2015.

2017

Promoting entrepreneurship among informatics engineering students: insights from a case study

Authors
Fernandes, JM; Afonso, P; Fonte, V; Alves, V; Ribeiro, AN;

Publication
EUROPEAN JOURNAL OF ENGINEERING EDUCATION

Abstract
Universities seek to promote entrepreneurship through effective education approaches, which need to be in permanent evolution. Nevertheless, the literature in entrepreneurship education lacks empirical evidence. This article discusses relevant issues related to promoting entrepreneurship in the software field, based on the experience of a 15-European Credit Transfer and Accumulation System course. This course seeks to instil in the students the recognition of the need to reconcile technical and business visions, organisational and commercial aspects, most of which have never been addressed previously. A series of semi-structured interviews made it possible to obtain relevant insights about the teaching-learning process underlying this course and its evolution over a seven-year period. Materials related with this course have been analysed, namely guidelines produced by the teachers and deliverables produced by the students. This article discusses the dimensions that were identified as fundamental for promoting entrepreneurship skills in the field of software, namely teamwork, project engagement, and contact with the market.

2017

DottedDB: Anti-Entropy without Merkle Trees, Deletes without Tombstones

Authors
Goncalves, R; Almeida, PS; Baquero, C; Fonte, V;

Publication
2017 IEEE 36TH INTERNATIONAL SYMPOSIUM ON RELIABLE DISTRIBUTED SYSTEMS (SRDS)

Abstract
To achieve high availability in the face of network partitions, many distributed databases adopt eventual consistency, allow temporary conflicts due to concurrent writes, and use some form of per-key logical clock to detect and resolve such conflicts. Furthermore, nodes synchronize periodically to ensure replica convergence in a process called anti-entropy, normally using Merkle Trees. We present the design of Dotted-DB, a Dynamo-like key-value store, which uses a novel node-wide logical clock framework, overcoming three fundamental limitations of the state of the art: (1) minimize the metadata per key necessary to track causality, avoiding its growth even in the face of node churn; (2) correctly and durably delete keys, with no need for tombstones; (3) offer a lightweight antientropy mechanism to converge replicated data, avoiding the need for Merkle Trees. We evaluate DottedDB against MerkleDB, an otherwise identical database, but using per-key logical clocks and Merkle Trees for anti-entropy, to precisely measure the impact of the novel approach. Results show that: causality metadata per object always converges rapidly to only one id-counter pair; distributed deletes are correctly achieved without global coordination and with constant metadata; divergent nodes are synchronized faster, with less memory-footprint and with less communication overhead than using Merkle Trees.

2014

Scalable and Accurate Causality Tracking for Eventually Consistent Stores

Authors
Sergio Almeida, PS; Baquero, C; Goncalves, R; Preguica, N; Fonte, V;

Publication
DISTRIBUTED APPLICATIONS AND INTEROPERABLE SYSTEMS (DAIS 2014)

Abstract
In cloud computing environments, data storage systems often rely on optimistic replication to provide good performance and availability even in the presence of failures or network partitions. In this scenario, it is important to be able to accurately and efficiently identify updates executed concurrently. Current approaches to causality tracking in optimistic replication have problems with concurrent updates: they either (1) do not scale, as they require replicas to maintain information that grows linearly with the number of writes or unique clients; (2) lose information about causality, either by removing entries from client-id based version vectors or using server-id based version vectors, which cause false conflicts. We propose a new logical clock mechanism and a logical clock framework that together support a traditional key-value store API, while capturing causality in an accurate and scalable way, avoiding false conflicts. It maintains concise information per data replica, only linear on the number of replica servers, and allows data replicas to be compared and merged linear with the number of replica servers and versions.

2018

Qualification offer in EGOV competencies in PALOP-TL

Authors
Silva, JMC; Ramos, LFM; Fonte, V;

Publication
ACM International Conference Proceeding Series

Abstract
Information and Communications Technologies (ICT) have been successfully used in order to promote and pursue the goals of UN's 2030 Agenda for Sustainable Development. Meeting these goals, however, require significant efforts on public policy development, adequate planning and implementation, as well as qualified human resources working at every level of government, public administration and institutions. This paper presents a first quantitative analysis originated from Electronic Government-related training sessions that took place on all five Portuguese Speaking African Countries, and in Timor-Leste along 2017. The results focus on (i) the availability of higher education institutions offering courses related to EGOV on each of those countries; (ii) the qualification of the professionals attending those sessions; and (iii) how availability of local higher education courses translates into qualifications of local professionals serving at public administration level. This paper also discusses some perceptions gathered from the field, both from participants and lecturer teams, framing additional challenges that EGOV-related courses must take into account in those particular settings. It concludes by pointing out some of the works already taking place, which provides a deeper understanding of the workforce competencies in EGOV for each of those countries. © 2018 Copyright is held by the owner/author(s). Publication rights licensed to ACM.

2019

Optimal control applied to an irrigation planning problem: A real case study in Portugal

Authors
Lopes, SO; Pereira, RMS; Pereira, PA; Caldeira, AC; Fonte, VF;

Publication
International Journal of Hydrology Science and Technology

Abstract
In this paper, a daily plan model to the irrigation of a crop field using optimal control was developed. This daily plan model have in consideration: weather data (temperatures, rainfall, wind speed), the type of crop, the location, humidity in the soil at the initial time, the type of soil and the type of irrigation. The aim is to minimise the water used in the irrigation systems ensuring that the field crop is kept in a good state of preservation. MATLAB was used to develop our mathematical model and obtain its output. Its results were compared with experimental ones obtained from a real farm field of grass in Portugal. This comparison not only allowed us to validate our model, but also allowed us to conclude that, using optimal control considerable savings in water resources, while keeping the crop safe are obtained. Some real test cases were simulated and the comparison between the optimised water to be used by the irrigation system (calculated by software) and the real amount of water used in irrigation site (on-off control system for irrigation) produced water savings above 10%. © 2019 Inderscience Enterprises Ltd.

  • 1
  • 5